Appendix IA

Preliminary Contamination Report

100 Christies Street St Leonards NSW 2065 (02) 9928 2100

www.jacobs.com

4 March 2016

Mr Daniel Noaeen Transurban Level 9 1 Chifley Square Sydney NSW 2000

Our ref: IA104600

Preliminary Contamination Investigation: M2 – Macquarie Park Motorscapes Project

1. Introduction

Jacobs Group (Australia) Pty Ltd (Jacobs) was commissioned by Transurban to undertake a Preliminary Contamination Investigation (PCI) to support the proposed development of vacant land located adjacent to the M2 Motorway, Macquarie Park NSW (herein after referred to as "the site").

For the purposes of the investigation, the site has been divided into three distinct areas (refer to Figure 1) as detailed below:

- Area 1 Industrial Creek
- Area 2 Former compound site
- Area 3 Shrimptons Creek

2. Understanding of the proposed development at the site

Jacobs understand that the proposed development of the site will comprise the following:

- Creation of construction vehicular access both from the motorway and Khartoum Road, and foot access from Leisure Close.
- Establishment of internal traffic haulage routes, environmental controls, laydown areas and site compound facilities.
- Control of noxious weed species including removal and disposal (or mulching and burial on site).
- Revetment work to the base of creek banks along stretches of Shrimptons Creek and Industrial Creek
- Installation of gross pollutant traps at both creeks
- Repair of the existing drainage swale next to the motorway
- Modification work to the existing water quality basin
- Earthworks associated with the revegetation of the site
- Management of known areas of soil contamination
- Earthworks and re-profiling associated with the art installation on the deck area of the site
- Revegetation of the site with native vegetation species

- Importation of up to 15,000 m3 of Virgin Extracted Natural Material (VENM) and 1,500m3 of clean topsoil
- Erection of the art installation
- Relocation of road signage
- Ongoing weed management including long term maintenance and monitoring activities.

3. Background

Jacobs were previously commissioned by Transurban to undertake a site assessment and constraints study (*M2 Park Site Assessment and Constraints Study, March 2015*). The March 2015 study included a preliminary contamination assessment based on a review of available information and observations made during a site inspection. The conclusions and recommendations from this preliminary contamination assessment are detailed below:

- The north eastern portion of the site has been subject to substantial filling. Although some analytical testing has been undertaken within 3m below ground level, the quality of the fill material below 3m is unknown.
- Although sampling and analysis of fill materials within Area 2 by Parsons Brinkerhoff (PB, 2008) generally reported low levels of contaminants, a number of these contaminants cannot be assessed in the context of current guidelines as the guidelines used in the PB (2008) report have changed.
- The presence of anthropogenic materials within the fill profile could indicate a potential higher contamination risk in comparison to if the fill material only comprised rock and soil materials.
- It is unknown whether the site has been used for potentially contaminating activities since completion of the PB (2008) investigation.
- Asbestos was identified in a sample of fibre cement sheeting observed at the surface of the site. There is the potential for more asbestos containing materials to be present across the surface of the site or within the deeper fill profile.

Broad recommendations detailed in the preliminary contamination assessment to address potential contamination at the site were as follows:

• Undertake intrusive investigations to quantify the contamination risk in the context of the proposed land use.

4. Objectives

The objectives of the contamination investigation were to identify whether contamination is present within areas that will be disturbed as part of the proposed redevelopment. If contamination is identified, appropriate measures will need to be implemented to reduce impacts to construction works, site users and environmental receptors.

5. Scope of works

The scope of works undertaken as part of the PCI is detailed below.

5.1 Traffic Management

Traffic management and associated planning activities were undertaken to enable access for an excavator to the site from the motorway.

5.2 Excavation

The investigation undertaken was preliminary in nature and was designed to provide general site coverage (laterally and vertically) to inform the proposed construction activities at the site. The number of sampling locations does meet the minimum sampling requirements as detailed in the NSW EPA (1995) *Contaminated Sites: Sampling Design Guidelines.*

Test pitting with the aid of track mounted excavator was undertaken at five locations (TP01 to TP05) across the former compound site. All test pits were excavated to the limit of the investigation to a depth of 1.5 m below ground level (bgl).

Two boreholes (BH01 and BH02) were drilled within Area 1 (Industrial Creek) and one borehole (BH03) was drilled within Area 3 (Shrimptons Creek) to a maximum depth of 1.0 mbgl with the aid of a decontaminated hand auger.

The co-ordinates of the sampling locations were surveyed using a hand held non-differential GPS.

The sampling locations are presented as Figure 1.

5.3 Sampling

For test pits, samples were collected directly from the centre of the excavator bucket. Samples from boreholes were collected directly from the auger head. New nitrile gloves were worn during the collection of each sample. Care was taken to ensure that representative samples were obtained from the depth required and that the integrity was maintained, particularly when dealing with potentially volatile and semi-volatile compounds.

The hand auger was decontaminated between each sampling location using a decontaminating agent (Decon 90) and rinsed with potable water.

All soil samples were placed in jars provided by the primary laboratory. All sample jars were fitted with Teflon lined lids. The jars were completely filled with soil, labelled with the date, unique sampling point identification and sampler information. The soil jars, once filled with sample and sealed, were immediately placed in an esky / cool box in which a cooling medium had been added to keep the samples below a temperature of approximately 4°C.

At the end of the sampling program the samples in the cool box were transported to the laboratory. Custody seals were placed on the esky / cool box for delivery to the laboratory under Chain of Custody (CoC).

5.4 Analytical Plan

Selected soil/fill samples were analysed at a National Association of Testing Authorities (NATA) accredited laboratory for the following potential contaminants of concern:

• Eight samples for heavy metals, Total Recoverable Hydrocarbons (TRH), monocyclic aromatic hydrocarbons (BTEX), polycyclic aromatic hydrocarbons (PAH), organochlorine pesticides (OCP), polychlorinated biphenyls (PCB) and asbestos.

5.5 Reinstatement

Cuttings generated during excavation of test pits and boreholes, were used to backfill the respective excavations. Care was taken to ensure that the excavated materials were returned to the excavations in the approximate order in which they were excavated (deep cuttings returned to the base of the excavation and shallow cuttings to the surface).

6. Site Assessment Criteria

To address potential health and environmental impacts at the site, Jacobs compared the analytical testing results against a set of health and ecological based soil investigation levels (referred to as the Site Assessment Criteria (SAC)) appropriate for the proposed land use (considered to be open space). That is, the SAC have been set at a level that provides confidence that contaminant concentrations below the SAC will not adversely affect human health or terrestrial ecosystems.

The SAC developed for the investigation has been derived from Schedule B1 Guideline on Investigation levels for Soil and Groundwater (NEPC, 2013).

6.1 Aesthetics

Aesthetics on sites relates to the presence of observable odours, discoloration and erroneous wastes materials in soil which could possibly indicate contamination. Such olfactory evidence can point to how receptors can be impacted by vapours on and migrating from the site. Odour threshold for organic substances can be exceeded in offsite settings (through groundwater transmission of hydrocarbons) and whilst may not represent a direct health risk, could possibly prompt civil action. Aesthetics were continually assessed during the investigation and reported on the field logs (where present). Generalised site stratigraphy is presented in **Section 8**.

6.2 Ecological investigations levels

The site is located adjacent to the Lane Cove National Park. As such, ecological investigation levels (EILs) were considered as part of this investigation.

EILs adopted for this investigation are presented in Table 4.1.

Contaminant	Ecological investigation level
Arsenic	100 ¹
Cadmium	3 ²
Chromium	400 ²
Copper	100 ²
Lead	600 ²
Mercury	1 ²
Nickel	60 ²
Zinc	200 ²

Table 4.1Ecological investigation levels (expressed as mg/kg)

1NEPC 2013 generic calculated EIL.

²NEPC 1999 generated EILs (no EIL provided in NEPC 2013).

6.3 Ecological screening levels

Ecological Screening Levels (ESLs) are focused on petroleum hydrocarbon and total recoverable hydrocarbon (TRH) compounds and are compared against actual site conditions (sub-surface materials and depth) to assess the potential risk to terrestrial ecosystems. For the purposes of calculating the ESLs, the generic soil type (i.e. three broad classes of sands, silts or clays) and land use needed to be defined.

For the purposes of this assessment, Jacobs considered clays to be the most representative for the soil profile across the different areas of the site.

Given the proposed use of the site is likely to be open space, the corresponding land use and associated ESL was used to determine the assessment criteria. **Table 4.2** describes the ESLs adopted for the site.

Fraction	ESL							
F1 C ₆ – C ₁₀	180							
F2 >C ₁₀ - C ₁₆	120							
F3 >C ₁₆ - C ₃₄	1300							
F4 >C ₃₄ - C ₄₀	5600							
Benzene	65							
Toluene	105							
Ethylbenzene	125							
Xylenes	45							
Benzo(a)pyrene	0.7							

Table 4.2Site ESLs for petroleum based fractions (expressed as mg/kg)

6.4 Health investigation levels

To address potential health impacts at the site, Jacobs compared the analytical testing results against a set of appropriate health based Soil Investigation Levels (SILs) in context of the proposed land use and taken into consideration the potential for contamination in soil to impact upon groundwater and generate vapours which could impact upon on site and off site human receptors.

The health based soil investigation levels are a combination of Health Investigation Levels (HILs) and Health Screening Levels (HSLs).

HILs have been developed for a broad range of metals and organic substances. The HILs are applicable for assessing human health risk via all relevant pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of three metres below the surface for residential use. Site-specific conditions should determine the depth to which HILs apply for other land uses.

HSLs have been developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via the inhalation and direct contact pathways. The HSLs depend on specific soil physico-chemical properties, land use scenarios, and the characteristics of building structures. They apply to different soil types, and depths below surface to >4 m. Further detail on their use is provided in *Friebel and Nadebaum* (2011a, 2011b & 2011c).

The HSLs defined within the NEPC 2013 relate only to the volatile fractions of the petroleum hydrocarbons range i.e. BTEX, naphthalene and TRH $C_6 - C_{10}$, TRH $C_{10} - C_{16}$.

HSLs for the TRH $C_{16} - C_{40}$ petroleum fractions are defined within the CRC CARE Technical Document (Friebel and Nadebaum 2011). Chemicals in the >C₁₆-C₃₄ and >C₃₄-C₄₀ fractions are non-volatile and therefore not of concern for vapour intrusion, however, exposure can be via direct contact

pathways (dermal contact and incidental ingestion and inhalation of soil particles). Direct contact HSLs for these fractions can be found in Friebel and Nadebaum (2011a).

Based on the proposed use of the site, the site has been classed as open space for the purpose of this investigation. Therefore, Jacobs have adopted the lower value from the following criteria:

• NEPC (2013) Health Investigation Levels recommended for exposure setting 'C' which includes public open space such as parks, playgrounds, playing fields, secondary schools and footpaths.

Based on specific site conditions, Jacobs have adopted the specific soil Health Screening Levels (HSLs) detailed in NEPC (2013) in consideration of the following:

- Based on the proposed land use, the site could be used as an open space.
- The site is within close proximity to areas which are considered to be of ecological significance (i.e. Lane Cove National Park).
- The material excavated during the investigation generally comprised clay or had fine grained soil texture.
- All samples were collected above 1.5 mbgl.

NEPC (2013) provides health based screening levels for different forms of asbestos contamination in soil. To apply these screening levels, significant investigations, excavation and sample volumes are required to assess the volume of asbestos relative to soil. Jacobs have adopted a high level criterion to assess the presence / absence of asbestos in soil samples and whether additional investigations are required to assess the risk to site users. The high level criterion adopted by Jacobs is no asbestos in any form present in soil samples or observed in excavated materials.

A summary of the adopted Health Investigation Levels (HILs) is provided in Table 4.3.

 Table 4.3
 Soil investigation levels (expressed as mg/kg)

Contaminant	Soil Investigation Levels							
Metals/N	Metalloids 1							
Arsenic (total)	300							
Cadmium	90							
Chromium (VI)	300							
Copper	17,000							
Lead	600							
Mercury (inorganic)	80							
Nickel	1,200							
Zinc	30,000							
Polychlorinated	Biphenyls (PCB) 1							
PCB	1							
Organochlorine	Pesticides (OCP) ¹							
Chlordane	70							
Endosulfan	340							

Endrin	20							
Heptachlor	10							
НСВ	10							
Methoxychlor	400							
BTEX Co	ompounds ²							
Benzene	NL							
Toluene	NL							
Ethylbenzene	NL							
Xylenes	NL							
Naphthalene	NL							
Total Recoverable	Hydrocarbons (TRH)							
F1 C6 – C10	5,100 ³							
F2 >C10 – C16	3,800 ³							
>C16 – C34	5,300 ³							
>C34 - C40	7,400 ³							
Polycyclic Aromatic	Hydrocarbons (PAHs)							
Carcinogenic PAHs (as BaP TEQ)	3 ¹							
Naphthalene	NL ²							
Sum of PAHs	300 ¹							
Ast	pestos							
Asbestos ID in soil	Not Detected							
Trace Analysis	No Respirable Fibres							

Notes:

¹ NEPC (2013) Table 1 A(1) Health investigations levels for soil contaminants – Recreational C.

²NEPC (2013) Table 1A(3) Soil HSLs for Vapour Intrusion (mg/kg) HSL C Recreational / Open Space.

³ HSL-C Recreational / Open Space Criteria detailed within Table 4, Friebel, E & Nadebaum, P 2011, Soil Health screening levels for direct contact, Technical Report 10.

NL - NL indicates the HSL is not limiting.

7. Quality Assurance / Quality Control

Field and laboratory Quality Assurance / Quality Control (QA/QC) requirements (where applicable) compliant with NEPC (2013) requirements undertaken as part of the field work program (PCI only) are outlined below.

All soil and water samples were collected by an experienced Jacobs scientist, under established Jacobs protocols. Jacobs personnel have been trained in sample collection and handling techniques.

Jacobs did not collect and analyse field QC samples. The laboratory completed their own internal QC.

7.1 Laboratory quality assurance

All analysis was undertaken by a NATA accredited laboratory using NATA accredited analytical methods.

7.2 Laboratory quality control

Laboratory QA/QC data is presented in full in the laboratory certificates in Appendix A.

7.2.1 Laboratory duplicates

RPDs for all laboratory duplicate samples were within the laboratory acceptance criteria.

7.2.2 Laboratory control samples

Laboratory control samples conformed to the laboratory acceptance criteria.

7.2.3 Surrogates

Recoveries for laboratory surrogate samples conformed to the laboratory acceptance criteria.

7.2.4 Matrix spikes

The matrix spike recoveries were within the laboratory acceptance criteria.

7.2.5 Method blanks

All method blanks reported analyte concentration below the laboratory LOR and therefore conformed to the laboratory acceptance criteria.

7.2.6 Sample holding times

All samples were extracted and analysed within the specified holding times.

7.2.7 Sample condition

All samples were received by the analytical laboratory in correctly preserved and chilled containers with no reported breakages. Sample receipt advice is presented with the laboratory reports in **Appendix A**.

8. Results

All fieldwork was undertaken by an experienced Jacobs environmental scientist between 17 and 18 February 2016.

8.1 Site stratigraphy

The sub-surface material encountered across the respective areas of the site generally comprised fill material overlying natural soils (BH01) and fill material in all other sampling locations (to the limit of investigation). The fill material observed across Area 1 and Area 3 compromised mainly of soil materials (i.e. sandy clays, silty clays). The fill material observed across Area 2 comprised mainly of sandstone, shale and concrete with minor inclusions of other waste materials such as wood and plastic. Stratigraphy information is detailed in the test pit and bore logs provided in **Appendix A**.

8.2 Soil analytical results

Soil analytical results are presented in full in **Table A** and discussed below. Laboratory certificates are provided in **Appendix B**.

8.2.1 Heavy metals

Concentrations of heavy metals in all samples analysed were below the SAC with the exception of zinc (434 mg/kg) detected in sample BH01_0.0-0.15 which exceeded the EIL of 200 mg/kg.

8.2.2 BTEX

Concentrations of BTEX compounds in all samples analysed were below the LOR and below the SAC.

8.2.3 TRH

Concentrations of TRH in all samples analysed were below the LOR and below the SAC.

8.2.4 OCP

Concentrations of all OCP compounds in all samples were below the LOR and below the SAC.

8.2.5 PAH

Concentrations of all PAH compounds in all samples analysed were below the SAC.

8.2.6 PCB

Concentrations of all PCB compounds in all samples analysed were below the LOR and below the SAC.

8.2.7 Asbestos

A loose bundle of friable asbestos fibres was identified in sample TP01_0.4-0.6. Asbestos was not identified in any other sample submitted for identification.

9. Conclusions

Based on field observations and laboratory results, the key findings of the PCI were as follows:

- The sub-surface material encountered across the respective areas of the site generally comprised fill material overlying natural soils (BH01) and fill material in all other sampling locations (to the limit of investigation). The fill material observed across Area 1 and Area 3 compromised mainly of soil materials (i.e. sandy clays, silty clays). The fill material observed across Area 2 comprised mainly of sandstone, shale and concrete with minor inclusions of other waste materials such as wood and plastic.
- Asbestos fibres were identified within the fill material excavated from Area 2. The presence of asbestos within the fill mass is further supported by the identification of bonded asbestos at the surface of Area 2 during an earlier site walkover. There is the potential for asbestos to be present in other locations within the fill mass.

• Considering that zinc concentrations were detected in one sample at concentrations only exceeding the EIL, it is unlikely that zinc at these concentrations would impact upon construction works, site users and environmental receptors.

10. Recommendations

Based on the results of the PCI and the broad understanding of the project, Jacobs recommend the following:

Asbestos fibres were detected in one sampling location in Area 2 and there is the potential for asbestos to be present in other locations. Any works undertaken within Area 2 that disturb site surfaces will need to be managed under an appropriate asbestos management plan during construction and the ongoing operation of the site. The asbestos management plan would need to be prepared in accordance with the requirements of the Work Health and Safety Regulations (2011). Depending on the activities to be undertaken, the asbestos management plan would be prepared in accordance with the following:

- Code of Practice for the Safe Removal of Asbestos 2nd Edition [NOHSC:2002 (2005)]
- Code of Practice for the Management and Control Asbestos in the Workplace [NOHSC:2018 (2005)].

Although no notable contamination was identified within Areas 1 and 3, fill is present in this area. To manage potential contamination risks not identified during the PCI, an appropriate unexpected finds protocol should be incorporated into the construction environmental management plan.

11. Limitations

The sole purpose of this report and the associated services performed by Jacobs is to assess the condition of the site (with respect to soil contamination) in accordance with the scope of services set out in the contract between Jacobs and Transurban (the Client). That scope of services, as described in this report, was developed with the Client.

In preparing this report, Jacobs has relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, Jacobs has not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

Jacobs derived the data in this report from information sourced from the Client (if any), from observations made during the investigations and data from analytical laboratories. The passage of time, manifestation of latent conditions or impacts of future events may require further examination of the project and subsequent data analysis, and re-evaluation of the data, findings, observations and conclusions expressed in this report. Jacobs has prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

This report should be read in full and no excerpts are to be taken as representative of the findings. No responsibility is accepted by Jacobs for use of any part of this report in any other context.

This report has been prepared on behalf of, and for the exclusive use of, Jacobs' Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party.

Yours sincerely

۲ へ. Le

Michael Stacey Principal Environmental Scientist (02) 9032 1467 Michael.Stacey@jacobs.com

Figure 1	Site sampling locations
Table A	Soil Analytical Results
Appendix A	Test Pit and Borehole Logs
Appendix B	Laboratory Certificates

Figure 1 **Test locations**

Key

- Site boundary Existing water quality basin
- ٠ Boreholes ₽
- Test pits
- Areas of investigation

The information and concepts contained in this document are the intellectual property of Jacobs and are subject to site survey and detailed design. Not to be used for construction. Use or copying of the document in whole or in part without written permission of Jacobs constitutes an infringement of copyright. Jacobs does not warrant that this document is definitive nor free of error and does not accept liability for any loss caused or arising from reliance upon information provided herein.

Table A: Analytical Results				ALS Samp	le number: mple date:	ES1603869001 17/02/2016	ES1603869008 18/02/2016	ES1603869006 17/02/2016	ES1603869010 17/02/2016	ES1603869013 18/02/2016	ES1603869019 18/02/2016	ES1603869024 18/02/2016	ES1603869027 18/02/2016
				34	Sample ID	BH01_0.0-0.15	BH03_0.3-0.4	BH02_0.4-0.5	TP01_0.4-0.6	TP02_0.0-0.15	TP03_0.8-1.0	TP04_1.4-1.5	TP05_0.8-1.0
				1	Depth (m):	0.0-0.15 Area 1	0.3-0.4 Area 3	0.4-0.5 Area 1	0.4-0.6 Area 2	0.0-0.15 Area 2	0.8-1.0 Area 2	1.4-1.5 Area 2	0.8-1.0 Area 2
Analyte grouping/Analyte	Units	LOR	EIL	ESL	HIL	Alea I	Aleas	Alcai	Alea 2	Alea 2	Aleaz	Alea 2	Alea 2
EA002 : pH (Soils)													
pH Value	pH Unit	0.1				6.4				7.5	7.8		7.8
EA010: Conductivity													
Electrical Conductivity @ 25°C	μS/cm	1				134				73	91		45
EA055: Moisture Content													
Moisture Content (dried @ 103°C)	%	1				33.8	13.2	10.0	9.7	21.7	15.3	11.2	12.8
EA200: AS 4964 - 2004 Identification of Asbestos in Soils													
Asbestos Detected	g/kg	0.1			ND	No	No	No	Yes	No	No	No	No
Asbestos Type Sample weight (dry)	 g	0.01			ND	- 64.2	- 92.6	- 93.7	Ch 93.6	- 106	- 94.9	- 101	- 101
Description						Mid brown clay soil with grey rocks.	Mid brown clay soil with grey rocks.	Mid brown sandy soil with grey rocks.	Mid brown clay soil with one loose bundle of friable asbestos fibres approx 3 x 1 x 0.5 mm.	Mid brown clay soil with grey rocks.	Mid brown clay soil with grey rocks.	Mid grey - brown clay soil with grey rocks.	Mid grey - brown clay soil with grey rocks.
· · · · · · · · · · · · · · · · · · ·													
EG005T: Total Metals by ICP-AES Arsenic	mg/kg	5	100		300	<5	5	<5	<5	6	<5	5	<5
Cadmium	mg/kg	1	3		90	2	<1	<1	<1	<1	<1	<1	<1
Chromium Copper	mg/kg mg/kg	2 5	400		300 17000	30 73	8 16	9 <5	8	11 25	10 16	10 26	7 40
Lead	mg/kg	5	600		600	258	16	17	14	52	18	23	114
Nickel Zinc	mg/kg mg/kg	5	60 200		1200 30000	16 434	7 46	3 21	5 20	8 52	10 43	18 81	<2 10
EG035T: Total Recoverable Mercury by FIMS Mercury	mg/kg	0.1	1		80	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
· · · · · · · · · · · · · · · · · · ·													
EP066: Polychlorinated Biphenyls (PCB) Total Polychlorinated biphenyls	mg/kg	0.1			1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticides (OC) alpha-BHC	mg/kg	0.05				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	mg/kg	0.05		[<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
beta-BHC gamma-BHC	mg/kg mg/kg	0.05 0.05				<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
delta-BHC	mg/kg	0.05			10	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05
Heptachlor Aldrin	mg/kg mg/kg	0.05 0.05			10	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Heptachlor epoxide	mg/kg	0.05			70	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
Total Chlordane (sum) trans-Chlordane	mg/kg mg/kg	0.05 0.05			70	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
alpha-Endosulfan	mg/kg	0.05				< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05
cis-Chlordane Dieldrin	mg/kg mg/kg	0.05 0.05				<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
4.4`-DDE	mg/kg	0.05			20	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05
Endrin Endosulfan (sum)	mg/kg mg/kg	0.05 0.05			20 340	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
beta-Endosulfan	mg/kg	0.05				< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
4.4`-DDD Endrin aldehyde	mg/kg mg/kg	0.05 0.05				<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Endosulfan sulfate	mg/kg	0.05				<0.05 <0.2	<0.05	<0.05 <0.2	<0.05	< 0.05	<0.05 <0.2	<0.05	<0.05
4.4`-DDT Endrin ketone	mg/kg mg/kg	0.2 0.05				<0.2	<0.2 <0.05	<0.2	<0.2 <0.05	<0.2 <0.05	<0.2	<0.2 <0.05	<0.2 <0.05
Methoxychlor Sum of DDD + DDE + DDT	mg/kg	0.2 0.05			400	<0.2 <0.05	<0.2 <0.05	<0.2 <0.05	<0.2 <0.05	<0.2 <0.05	<0.2 <0.05	<0.2 <0.05	<0.2 <0.05
Sum of Aldrin + Dieldrin	mg/kg mg/kg	0.05				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons													
Naphthalene	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene Acenaphthene	mg/kg	0.5 0.5				<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Fluorene	mg/kg mg/kg	0.5				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene Fluoranthene	mg/kg mg/kg	0.5 0.5				<0.5 0.7	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Pyrene Benz(a)anthracene	mg/kg mg/kg	0.5 0.5				0.6 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Benz(a)anthracene Chrysene	mg/kg mg/kg	0.5 0.5				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5
Benzo(b+j)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg	0.5 0.5				0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Benzo(k)nuorantnene Benzo(a)pyrene	mg/kg mg/kg	0.5		0.7		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene Dibenz(a.h)anthracene	mg/kg mg/kg	0.5 0.5				<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Benzo(g.h.i)perylene	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydrocarbons Benzo(a)pyrene TEQ (zero)	mg/kg mg/kg	0.5 0.5			300	1.8 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Benzo(a)pyrene TEQ (half LOR)	mg/kg	0.5				0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5			3	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocarbons													
C6 - C9 Fraction C10 - C14 Fraction	mg/kg mg/kg	10 50				<10 <50	<10 <50	<10 <50	<10 <50	<10 <50	<10 <50	<10 <50	<10 <50
C15 - C28 Fraction	mg/kg	100				<100	<100	<100	<100	<100	<100	<100	<100
C29 - C36 Fraction C10 - C36 Fraction (sum)	mg/kg mg/kg	100 50				160 160	<100 <50	<100 <50	<100 <50	<100 <50	<100 <50	<100 <50	<100 <50
							-50	-50		-50		-30	-50
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractio C6 - C10 Fraction	ns mg/kg	10				<10	<10	<10	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX (F1)	mg/kg	10		180	5100	<10	<10	<10	<10	<10	<10	<10	<10
>C10 - C16 Fraction >C16 - C34 Fraction	mg/kg mg/kg	50 100		1300	5300	<50 180	<50 <100	<50 <100	<50 <100	<50 <100	<50 <100	<50 <100	<50 <100
>C34 - C40 Fraction	mg/kg	100		5600	7400	120	<100	<100	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum) >C10 - C16 Fraction minus Naphthalene (F2)	mg/kg mg/kg	50 50		120	3800	300 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50
	פיי יפייי			120	5500	-50	-50	-50		-50	-50	-50	-50
EP080: BTEXN Benzene	mg/kg	0.2		65		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg mg/kg	0.5		105		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	0.5 0.5		125		<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
meta- & para-Xylene ortho-Xylene	mg/kg mg/kg	0.5 0.5				<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5
Total Xylenes	mg/kg	0.5		45		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX Naphthalene	mg/kg mg/kg	0.2 1				<0.2 <1	<0.2 <1	<0.2 <1	<0.2 <1	<0.2 <1	<0.2 <1	<0.2 <1	<0.2 <1
		• 1		•	•			•				•	. I

Con

Concentrations exceeds human health investigation level

Concentrations exceeds ecological investigation level

Appendix A – Test Pit and Borehole Logs

BOREHOLE No. BH01

Sheet 1 of

Project: M2 Park

Location: West of Industrial Creek Job No: IA104600 Start - Finish Date: 17/02/16 - 17/02/16 Bore dia: 100 mm Driller: _{BC} Rig: Hand Auger

Client: Transurban

Surface Conditions: Topsoil Northings: Eastings:

FIELD DATA								SOIL DESCRIPTION		COMMENTS	
sample ID	sample type	visual ranking	odour ranking	PID (ppm)	QA/QC Sample ID	ground water depth (m)	graphic log	soil type, unified classification, colour, structure, particle characteristics, minor components	consistency/ density	moisture condition	drilling method, well construction, water and additional observations
BH01_0.0 - 0.15	•	0	A			-	$\frac{\sqrt{t_{Z}}}{\sqrt{t_{Z}}} \frac{\sqrt{t_{Z}}}{\sqrt{t_{Z}}}$	TOPSOIL: Silty CLAY: (CL) dark brown, slightly moist, soft, trace fine grained sands, minor rootlets and medium sized roots, no odour.	S	SI. M	
BH01_0.2 - 0.3	•	0	A			-		FILL: Sandy CLAY: (CL) brown, slightly moist, soft, fine to medium grained sands, no odour.	s	SI. M	
BH01_0.4 - 0.5	•	0	А			-		Silty CLAY: (CL) brown/grey mottled orange/brown, moist, soft, minor fine grained sands, no odour.	S	м	
						-		Sitty CLAY: (CL)	S	w	
BH01_0.9 - 1.0	•	0	A					Borehole terminated at 1.0 m bgl. Limit of Investigation.	_		
						-					
						-					
						-					
						2					
VISUAL RA 0 No visible evi 1 Slight visible 2 Visible contal 3 Significant visi 0DOUR RA	dence contan minatio sible co	of contar nination n ntaminat		QA	FIELD DATA ABBRE = Photo Ionisation Da reading (ppm, v/v) (QC Sample ID = Qua ality Control Sample II	etector lity Assu D	rance	Some Service And Servi	0 - 20 - 30 - 50	VS S F St	CONSISTENCY (Su) (very soft) < 12 kPa
A No Non-Natu B Slight Non-N C Moderate No D Strong Non-N	ral odo atural o n-Natu	ours odours ral odour	S	Ţ	GROUNDWATER S = Water level (stati = Water level (durin	c)		MOISTURE CONDITION D = Dry M = Moist W = Wet SI. M = Slightly Moist	60 60/150mr	NSt n H	(very stiff) 100 - 200 (hard) > 200 kPa

BOREHOLE No. BH02

Sheet 1 of 1

Project: M2 Park

Location: East of Industrial Creek Job No: IA104600 Start - Finish Date: 17/02/16 - 17/02/16

Bore dia: 100 mm Driller: BC Rig: Hand Auger

Client: Transurban

Northings:

Eastings:

Surface Conditions: Fill

RL: Logged: BC

Checked:

	FIELD DATA							SOIL DESCRIPTION		COMMENTS	
sample ID	sample type	visual ranking	odour ranking	PID (ppm)	QA/QC Sample ID	ground water depth (m)	graphic log	soil type, unified classification, colour, structure, particle characteristics, minor components	consistency/ density	moisture condition	drilling method, well construction, water and additional observations
BH02_0.0 - 0.15	•	1	A			-		FILL: Sandy CLAY: (CL) brown, dry, soft, medium grained sands, minor small to medium fragments of sandstone, minor rootlets, no odour.	S	D	
BH02_0.4 - 0.5	•	1	A			-		FILL: Clayey SAND: (SC) orange/brown, dry, medium density, medium grained sands, minor small to medium fragments of sandstone, no odour.	MD	D	
						-		Bore terminated at 0.5 m bgl. Refusal in Fill.			
						-					
						-					
VISUAL RA 0 No visible evi 1 Slight visible 2 Visible contar	dence contan	of contar nination	nination		FIELD DATA ABBR = Photo Ionisation Dr reading (ppm, v/v) /QC Sample ID = Qua	etector		L (loose) 10 -	20	VS S	CONSISTENCY (Su) (very soft) < 12 kPa (soft) 12 - 25 (ferm) 25 50
3 Significant vis ODOUR RA A No Non-Natu B Slight Non-Na C Moderate No D Strong Non-N	sible co NKINC ral odc atural c n-Natu	ontaminat G ours odours ral odour		/Qu	ality Control Sample II GROUNDWATER S = Water level (stati 2 = Water level (durir	d Symbol	.s	= Non Environmental Sample MD (medium dense) 20 - D (dense) D (dense) 30 - VD (very dense) >50 CO (compact) >50, CO (compact) D = Dry M = Moist W = Wet Sl. M = Slightly Moist Sl. M = Slightly Moist >50, CO (compact) >50, CO (compact)	50	F St VSt H	(firm) 25 - 50 (stiff) 50 - 100 (very stiff) 100 - 200 (hard) > 200 kPa

BOREHOLE No. BH03

Sheet 1 of 1

Project: M2 Park

Location: East of Shrimpton's Creek Job No: IA104600 Start - Finish Date: 18/02/16 - 18/02/16 Bore dia: 100 mm Driller: BC Rig: Hand Auger

Client: Transurban

Surface Conditions: Weeds Northings: Eastings:

		FIELD DATA SOIL DESCRIPTION									COMMENTS		
sample ID	sample type	visual ranking			QA/QC Sample ID	ground water depth (m)	graphic log	soil type, unified classification, colour, structure, particle characteristics, minor components	consistency/ density	moisture condition	drilling method, w construction, wat and additional		
BH03_0.0 - 0.15	es	o ran	odo V	(mdd)		gro	Bra	FILL: Silty CLAY: (CL) dark brown, dry, soft, minor fine grained sands, minor small fragments of sandstone and shale, cobbles of sandstone, no odour.	son con		observations		
BH03_0.3 - 0.4	•	0	А					FILL: Sandy CLAY: (CL) brown and light brown, slightly moist, firm, fine to medium grained sands, some small to medium fragments of shale and sandstone, no odour.	F	SI. M			
						_		Borehole terminated at 0.4 m bgl. Refusal in Fill.					
							_						
							-						
							_						
VISUAL RA 0 No visible ev 1 Slight visible	idence contarr	of contar nination	nination		FIELD DATA ABBRE = Photo Ionisation De reading (ppm, v/v)	etector		FIELD DATA SYMBOLS DENSITY (N-value = Environmental Sample VL (very loose) <10 L (loose) 10-		VS S	CONSISTENCY (Su) (very soft) < 12 kF (soft) 12 - 25		
2 Višible conta 3 Significant vi: ODOUR RA A No Non-Natu B Slight Non-N C Moderate No D Strong Non-1	sible co ANKING ural odo atural co on-Natu	ontaminat G ours odours ral odour		/Qu	IQC Sample ID = Qual ality Control Sample ID GROUNDWATER S = Water level (static = Water level (durin) Symbo	LS	✓ = Non Environmental Sample MD (medium dense) 20 - D (dense) 30 - VD (very dense) >50	30 50	F St VSt	(firm) 25 - 50 (stiff) 50 - 10 (very stiff) 100 - 2 (hard) > 200 k		

BOREHOLE No. TP01

Sheet 1 of

Project: M2 Park

Location: Area 2 - Old Compound Area Job No: IA104600 Start - Finish Date: 17/02/16 - 17/02/16 Bore dia: 600 mm Driller: Ken Coles Rig: 5.5 t Excavator

Client: Transurban

Surface Conditions: Long grass Northings: Eastings:

			FIE	LD DA	TA			SOIL DESCRIPTION		COMMENTS	
sample ID	sample type	visual ranking	odour ranking	PID (ppm)	QA/QC Sample ID	ground water depth (m)	graphic log	soil type, unified classification, colour, structure, particle characteristics, minor components	consistency/ density	moisture condition	drilling method, well construction, water and additional observations
TP01_0.0 - 0.15	•	1	A			-		FILL: gravelly Sandy CLAY: (CL) brown, dry, firm, medium to coarse grained sands, fine shale, sandstone and concrete gravel, some large fragments of shale concrete and sandstone, no odour.	F	D	
TP01_0.4 - 0.6	•	1	A			-		FILL: Sandy CLAY: (CL) brown and orange/brown, dry, firm, medium to coarse grained sands, minor small fragments of shale, sandstone and concrete, some large fragments of shale, concrete and sandstone, no odour.	F	D	
TP01_0.8 - 1.0	•	1	A			- - 1_ -		As above but grey/brown and slightly moist.	F	D	
TP01_1.4 - 1.5	•	1	А			-		FILL: sandy Silty CLAY: (CL) dark grey/brown, slightly moist, firm, medium grained sands, some small fragments of shale, some large fragments of shale and sandstone, no odour. Test Pit terminated at 1.5 m bgl. Limit of Investigation.	- F	SI. M	
						-					
VISUAL RA 0 No visible evi 1 Slight visible 2 Visible contar 3 Significant vis ODOUR RA A No Non-Natu B Slight Non-N C Moderate No D Strong Non-N	dence contan ninatio sible co	of contar nination n ntaminat		QA	FIELD DATA ABBRI = Photo Ionisation Di reading (ppm, v/v) QC Sample ID = Qua ality Control Sample I	etector Ility Assu	rance	A state of the	10) - 20) - 30) - 50	VS S F St	CONSISTENCY (Su) (very soft) < 12 kPa
A No Non-Natu B Slight Non-N C Moderate No D Strong Non-N	ral odo atural o n-Natu	ours odours ral odour	S	Ţ	GROUNDWATER = Water level (stati = Water level (durin	c)		MOISTURE CONDITION D = Dry M = Moist W = Wet SI. M = Slightly Moist	50 50/150mr	n H	(very stiff) 100 - 200 (hard) > 200 kPa

BOREHOLE No. TP02

Sheet 1 of 1

Project: M2 Park

Location: Area 2 - Old Compound Area Job No: IA104600 Start - Finish Date: 18/02/16 - 18/02/16 Bore dia: 600 mm Driller: Ken Coles Rig: 5.5 t Excavator

Client: Transurban

Surface Conditions: Long grass Northings: Eastings:

			FIE	LD DA	ΓA			SOIL DESCRIPTION		COMMENTS	
sample ID	sample type	visual ranking	odour ranking	PID (ppm)	QA/QC Sample ID	ground water depth (m)	graphic log	soil type, unified classification, colour, structure, particle characteristics, minor components	consistency/ density	moisture condition	drilling method, well construction, water and additional observations
TP02_0.0 - 0.15	•	1	A			-		FILL: Sandy CLAY: (CL) brown, dry, firm, some small fragments of sandstone and concrete, minor large fragments of sandstone and concrete, minor small fragments of plastic, no odour.	F	D	
TP02_0.4 - 0.6	•	1	A			- - -		FILL: Sandy CLAY: (CL) grey/brown, slightly moist, firm, fine to medium grained sands, some small to medium fragments of shale, sandstone and concrete, cobbles and boulders of concrete and sandstone, no odour.	F	SI. M	
TP02_0.8 - 1.0	•	1	A			- - 1_ -		FILL: Clayey SAND: (SC) brown, slightly moist, medium density, some small to medium fragments of shale, concrete and sandstone, cobbles and boulders of sandstone, no odour.	MD	SI. M	
TP02_1.4 - 1.5	•	1	А			-		FILL: Sandy CLAY: (CL) brown and dark brown, slightly moist, soft, minor small fragments of wood, minor small to medium fragments of shale, concrete and sandstone, cobbles and boulders of sandstone, no odour. Test Pit terminated at 1.5 m bol.	S	SI. M	
						-		Limit of Investigation.			
						2					
VISUAL RA 0 No visible evi 1 Slight visible 2 Visible conta 3 Significant vi	idence contar minatic	of contar nination on		QAV	FIELD DATA ABBRI = Photo Ionisation Dr reading (ppm, v/v) QC Sample ID = Qua lify Control Sample I	etector Ility Assu	•	Sector	0 - 20 - 30	VS S F	CONSISTENCY (Su) (very soft) < 12 kPa (soft) 12 - 25 (firm) 25 - 50
A No Non-Natu B Slight Non-N C Moderate No D Strong Non-N	NKING Iral odd atural o n-Natu	G ours odours iral odour			GROUNDWATER = Water level (stati	SYMBOI c)		MOISTURE CONDITION VD (very dense) >5	- 50 0 0/150mn	St VSt H	(stiff) 50 - 100 (very stiff) 100 - 200 (hard) > 200 kPa

BOREHOLE No. TP03

Sheet 1 of 1

Project: M2 Park

Location: Area 2 - Old Compound Area Job No: IA104600 Start - Finish Date: 18/02/16 - 18/02/16 Bore dia: 600 mm Driller: Ken Coles Rig: 5.5 t Excavator

Client: Transurban

Surface Conditions: Long grass Northings: Eastings:

	FIELD DATA							SOIL DESCRIPTION		COMMENTS	
sample ID	sample type	visual ranking	odour ranking	PID (ppm)	QA/QC Sample ID	ground water depth (m)	graphic log	soil type, unified classification, colour, structure, particle characteristics, minor components	consistency/ density	moisture condition	drilling method, well construction, water and additional observations
TP03_0.0 - 0.15	•	1	A			-		FILL: Sandy CLAY: (CL) brown, dry, firm, medium grained sands, some small fragments of concrete and sandstone, some large fragments of sandstone, shale and concrete, no odour.	F	D	
TP03 0.4 -		1	A					As above but stiff, minor small to medium fragments of shale and sandstone, cobbles and boulders of sandstone.	St	D	
0.6						-		FILL: Sandy CLAY: (CL)	St	SI. M	
TP03_0.8 - 1.0	•	1	A			- - 1_		minor medium to large fragments of shale and sandstone, minor large pieces of shale and sandstone, no odour.			
						-				0.14	
TP03_1.4 - 1.5	•	1	A					FILL: Silty CLAY: (CL) dark grey/brown and brown, slightly moist, firm, some fine to medium grained sands, some small to medium fragments of sandstone and shale, cobbles and boulders of shale, no odour.	F	SI. M	
						-		Limit of Investigation.			
						2_					
0177											
						-					
VISUAL RAI 0 No visible evi 1 Slight visible ontar 2 Visible contar 3 Significant vis 0 ODUR RA A No Non-Natu B Slight Non-Na C Moderate Noi D Strong Non-N	dence contan ninatio ible cc NKING ral odc atural co n-Natu	of contan nination n ontaminati ours odours ral odours	ion	QA	FIELD DATA ABBR = Photo Ionisation Du- reading (ppm, v/v) QC Sample ID = Qua ality Control Sample II GROUNDWATER S = Water level (station = Water level (during)	etector lity Assu D SYMBOI c)	rance	 Non Environmental Sample MD (medium dense) 20 D (dense) 30 VD (very dense) >50 	o - 20 - 30 - 50	VS S F St VSt	CONSISTENCY (Su) (very soft) < 12 kPa

BOREHOLE No. TP04

Sheet 1 of

Project: M2 Park

Location: Area 2 - Old Compound Area Job No: IA104600 Start - Finish Date: 18/02/16 - 18/02/16 Bore dia: 600 mm Driller: Ken Coles Rig: 5.5 t Excavator

Client: Transurban

Surface Conditions: Long grass Northings: Eastings:

			FIE	LD DA	TA			SOIL DESCRIPTION			COMMENTS
sample ID	sample type	visual ranking	odour ranking	DID (mdd)	QA/QC Sample ID	ground water depth (m)	graphic log	soil type, unified classification, colour, structure, particle characteristics, minor components	consistency/ density	moisture condition	drilling method, well construction, water and additional observations
TP04_0.0 - 0.15	•	1	A			-		FILL: Sandy CLAY: (CL) brown, dry, firm, some small to medium fragments of shale, sandstone and concrete, cobbles and boulders of sandstone, no odour.	F	D	
TP04_0.4 - 0.6	•	1	A			-		FILL: Silty CLAY: (CL) brown and light grey, dry, stiff, some fine to medium grained sands, some small fragments of shale, minor medium to large fragments of shale and sandstone, cobbles and boulders of sandstone, no odour. As above but brown and dark grey/brown.	St St	D	
TP04_0.8 - 1.0	•	1	A			- - 1_					
		1				-		FILL: Silty CLAY: (CL) dark brown/grey, slightly moist, firm, minor fine to medium grained, minor small fragments of sandstone and shale, cobbles and boulders of shale, no odour.	F	SI. M	
TP04_1.4 - 1.5		1	A			-		Test Pit terminated at 1.5 m bgl. Limit of Investigation.			
						2					
011707 0107404						-					
VISUAL RA 0 No visible evi 1 Slight visible 2 Visible contar 3 Significant vis 0DOUR RA A No Non-Natu B Slight Non-Na C Moderate No D Strong Non-N	dence contan minatic sible co NKINC ral odo atural o n-Natu	of contar nination ontaminat ours odours iral odour	ion		FIELD DATA ABBRt = Photo Ionisation Dureading (ppm, v/v) QC Sample ID = Qua ality Control Sample II GROUNDWATER S = Water level (stati = Water level (during)	etector lity Assu D SYMBOL c)	rance	 Non Environmental Sample MD (medium dense) 20 D (dense) 30 VD (very dense) >5 	0 - 20 - 30 - 50	VS S F St VSt	CONSISTENCY (Su) (very soft) < 12 kPa

BOREHOLE No. TP05

Sheet 1 of 1

Project: M2 Park

Location: Area 2 - Old Compound Area Job No: IA104600 Start - Finish Date: 18/02/16 - 18/02/16 Bore dia: 600 mm Driller: Ken Coles Rig: 5.5 t Excavator

Client: Transurban

Surface Conditions: Long grass Northings: Eastings:

			FIE	LD DA	TA			SOIL DESCRIPTION			COMMENTS	
sample ID	sample type	visual ranking	odour ranking	PID (mdd)	QA/QC Sample ID	ground water depth (m)	graphic log	soil type, unified classification, colour, structure, particle characteristics, minor components	consistency/ density	moisture condition	drilling method, well construction, water and additional observations	
TP05_0.0 - 0.15	•	1	A			-		FILL: Sandy CLAY: (CL) brown, dry, firm, fine to medium grained sands, some small to medium fragments of shale and sandstone, cobbles and boulders of shale and sandstone, minor rootlets, no odour. Bundle of plastic mesh observed.	F	D		
TP05_0.4 - 0.6	•	1	A			-		As above but brown and grey/brown, no rootlets.	F	D		
TP05_0.8 - 1.0	•	1	A			- - 1_ -		FILL: Clayey SAND: (SC) grey and brown/grey, slightly moist, medium density, fine to medium grained sands, some small to medium fragments of shale, sandstone and wood, cobbles and boulders of shale and sandstone, no odour.	MD	SI. M		
TP05_1.4 - 1.5	•	1	A			-		FILL: Silty CLAY: (CL) light grey and brown, slightly moist, firm, some fine to medium grained sands, some small to medium fragments of shale and sandstone, cobbles and boulders of shale, no odour. Large boulder of concrete observed Test Pit terminated at 1.5 m bgl. Limit of Investigation.	F	SI. M		
						2						
VISUAL RA	NKING				FIELD DATA ABBRE		NS	FIELD DATA SYMBOLS DENSITY (N-valu	e)		CONSISTENCY (Su)	
VISUAL RA 0 No visible ev 1 Slight visible 2 Visible conta 3 Significant vi 0DOUR RA A No Non-Nat. B Slight Non-N C Moderate NG D Strong Non-1	contan minatic sible co NKINC Iral odc atural c n-Natu	nination on ontaminat G ours odours iral odour	ion	QA /Qu	= Photo Ionisation De reading (ppm, v/v) QC Sample ID = Qual ality Control Sample II GROUNDWATER S = Water level (station = Water level (durin	lity Assu D SYMBOL c)	rance	 Environmental Sample VL (very loose) <11 L (loose) 10 MD (medium dense) 20 D (dense) 30 VD (very dense) >55 	o - 20 - 30 - 50	VS S F St VSt	(very soft) < 12 kPa	

Appendix B – Laboratory Certificates

CERTIFICATE OF ANALYSIS

Nork Order	ES1603869	Page	: 1 of 27
Client	: JACOBS GROUP (AUSTRALIA) PTY LTD	Laboratory	Environmental Division Sydney
Contact	: BLAIR CUMMINGS	Contact	
Address	: 100 CHRISTIE STREET P O BOX 164	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	ST LEONARDS NSW, AUSTRALIA 2065		
-mail	: blair.cummings@jacobs.com	E-mail	:
elephone	: +61 02 9928 2100	Telephone	: +61-2-8784 8555
acsimile	: +61 02 9928 2272	Facsimile	: +61-2-8784 8500
roject	: M2 PARK	QC Level	: NEPM 2013 B3 & ALS QC Standard
order number	: IA104600	Date Samples Received	: 19-Feb-2016 03:15
-O-C number	: 233253-233255	Date Analysis Commenced	: 23-Feb-2016
ampler	: BLAIR CUMMINGS	Issue Date	: 29-Feb-2016 15:11
Site	:		
		No. of samples received	: 28
Quote number	:	No. of samples analysed	: 19

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results

NATA Accredited Laboratory 825 Signatories

Accredited for compliance with ISO/IEC 17025.

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Ashesh Patel	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Dian Dao		Sydney Inorganics, Smithfield, NSW
Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW
Pabi Subba	Senior Organic Chemist	Sydney Inorganics, Smithfield, NSW Sydney Organics, Smithfield, NSW
RICHARD TEA	Lab technician	Sydney Inorganics, Smithfield, NSW
Shaun Spooner	Asbestos Identifier	Newcastle - Asbestos, Mayfield West, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

- Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting
 - ^ = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- ED007 and ED008: When Exchangeable AI is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + AI3+).

Page: 4 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

ub-Matrix: SOIL Matrix: SOIL)		Clie	ent sample ID	BH01_0.0-0.15	BH02_0.4-0.5	BH03_0.0-0.15	BH03_0.3-0.4	TP01_0.0-0.15
·	Cli	ent sampli	ng date / time	[17-Feb-2016]	[17-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[17-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-001	ES1603869-006	ES1603869-007	ES1603869-008	ES1603869-009
				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M CaCl e	ctract							
pH (CaCl2)		0.1	pH Unit	5.8		6.0		6.7
EA002 : pH (Soils)								
pH Value		0.1	pH Unit	6.4		7.9		8.5
EA010: Conductivity								
Electrical Conductivity @ 25°C		1	µS/cm	134		76		124
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	33.8	10.0		13.2	
EA150: Particle Sizing								
+75µm		1	%	52		55		59
+150μm		1	%	40		46		51
+300µm		1	%	16		36		39
+425µm		1	%	6		29		31
+600µm		1	%	3		26		26
+1180µm		1	%	<1		25		23
+2.36mm		1	%	<1		24		21
+4.75mm		1	%	<1		21		17
+9.5mm		1	%	<1		16		11
+19.0mm		1	%	<1		6		10
+37.5mm		1	%	<1		<1		<1
+75.0mm		1	%	<1		<1		<1
EA150: Soil Classification based on P	article Size							
Clay (<2 μm)		1	%	19		14		15
Silt (2-60 µm)		1	%	25		26		21
Sand (0.06-2.00 mm)		1	%	56		36		42
Gravel (>2mm)		1	%	<1		24		22
Cobbles (>6cm)		1	%	<1		<1		<1
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.49		2.49		2.65
EA200: AS 4964 - 2004 Identification o	of Asbestos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg	No	No		No	
Asbestos Type	1332-21-4	-		-	-		-	
Sample weight (dry)		0.01	g	64.2	93.7		92.6	
APPROVED IDENTIFIER:		-		S.SPOONER	S.SPOONER		S.SPOONER	

Page: 5 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH01_0.0-0.15	BH02_0.4-0.5	BH03_0.0-0.15	BH03_0.3-0.4	TP01_0.0-0.15
······································	Clie	ent samplir	ng date / time	[17-Feb-2016]	[17-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[17-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-001	ES1603869-006	ES1603869-007	ES1603869-008	ES1603869-009
			-	Result	Result	Result	Result	Result
ED006: Exchangeable Cations on Alka	line Soils - Continued	d						
Exchangeable Calcium		0.2	meg/100g			5.6		4.1
Exchangeable Magnesium		0.2	meq/100g			6.0		1.7
Exchangeable Potassium		0.2	meq/100g			<0.2		<0.2
Exchangeable Sodium		0.2	meq/100g			0.3		<0.2
Cation Exchange Capacity		0.2	meq/100g			242		118
Exchangeable Calcium Percent		0.2	%			46.5		69.7
Exchangeable Magnesium Percent		0.2	%			50.3		28.2
Exchangeable Potassium Percent		0.2	%			1.0		2.2
Exchangeable Sodium Percent		0.2	%			2.2		<0.2
Calcium/Magnesium Ratio		0.2	-			0.9		2.4
Magnesium/Potassium Ratio		0.2	-			47.4		13.0
ED007: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g	10.9				
Exchangeable Magnesium		0.1	meq/100g	3.0				
Exchangeable Potassium		0.1	meq/100g	0.1				
Exchangeable Sodium		0.1	meq/100g	0.5				
Cation Exchange Capacity		0.1	meq/100g	14.6				
Exchangeable Aluminium		0.1	meq/100g	<0.1				
Exchangeable Sodium Percent		0.1	%	3.7				
Exchangeable Magnesium Percent		0.1	%	20.8				
Exchangeable Potassium Percent		0.1	%	1.0				
Exchangeable Calcium Percent		0.1	%	74.5				
Calcium/Magnesium Ratio		0.1	-	3.6				
Magnesium/Potassium Ratio		0.1	-	20.5				
ED040: Sulfur as SO4 2-								
Sulfate as SO4 2-	14808-79-8	100	mg/kg	820				
ED093S: Soluble Major Cations								
Calcium	7440-70-2	10	mg/kg	60		40		50
Magnesium	7439-95-4	10	mg/kg	20		50		20
Sodium	7440-23-5	10	mg/kg	160		90		80
Potassium	7440-09-7	10	mg/kg	20		70		<10
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	<5	<5		5	
Cadmium	7440-43-9	1	mg/kg	2	<1		<1	

Page: 6 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	nt sample ID	BH01_0.0-0.15	BH02_0.4-0.5	BH03_0.0-0.15	BH03_0.3-0.4	TP01_0.0-0.15
	Clie	ent samplin	ng date / time	[17-Feb-2016]	[17-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[17-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-001	ES1603869-006	ES1603869-007	ES1603869-008	ES1603869-009
			-	Result	Result	Result	Result	Result
EG005T: Total Metals by ICP-AES - Co	ontinued							
Chromium	7440-47-3	2	mg/kg	30	9		8	
Copper	7440-50-8	5	mg/kg	73	<5		16	
Lead	7439-92-1	5	mg/kg	258	17		16	
Nickel	7440-02-0	2	mg/kg	16	3		7	
Zinc	7440-66-6	5	mg/kg	434	21		46	
EG035T: Total Recoverable Mercury	by FIMS							
Mercury	7439-97-6	0.1	mg/kg	0.2	<0.1		<0.1	
EK057G: Nitrite as N by Discrete Ana								
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1				
EK058G: Nitrate as N by Discrete An			5.5					
Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg	5.1				
			mg/kg					
EK059G: Nitrite plus Nitrate as N (NC		_	malka					
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	5.1				
EK074: Fluoride Extractable Phospho		i.						
Fluoride Extractable P (Bray)		1	mg/kg	8.8				
EP066: Polychlorinated Biphenyls (P	CB)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1		<0.1	
EP068A: Organochlorine Pesticides (OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05		<0.05	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05		<0.05	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05		<0.05	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05		<0.05	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05		<0.05	
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05		<0.05	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05		<0.05	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05		<0.05	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05		<0.05	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05		<0.05	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05		<0.05	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05		<0.05	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05		<0.05	
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05		<0.05	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05		<0.05	

Page: 7 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH01_0.0-0.15	BH02_0.4-0.5	BH03_0.0-0.15	BH03_0.3-0.4	TP01_0.0-0.15
	Cli	ient samplii	ng date / time	[17-Feb-2016]	[17-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[17-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-001	ES1603869-006	ES1603869-007	ES1603869-008	ES1603869-009
			-	Result	Result	Result	Result	Result
EP068A: Organochlorine Pestici	des (OC) - Continued							
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05		<0.05	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05		<0.05	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05		<0.05	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05		<0.05	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2		<0.2	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05		<0.05	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2		<0.2	
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05		<0.05	
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05		<0.05	
	0-2							
EP075(SIM)B: Polynuclear Aroma	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5		<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5		<0.5	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5		<0.5	
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5		<0.5	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5		<0.5	
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5		<0.5	
Fluoranthene	206-44-0	0.5	mg/kg	0.7	<0.5		<0.5	
Pyrene	129-00-0	0.5	mg/kg	0.6	<0.5		<0.5	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5		<0.5	
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5		<0.5	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	0.5	<0.5		<0.5	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5		<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5		<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5		<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5		<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5		<0.5	
^ Sum of polycyclic aromatic hydroc	carbons	0.5	mg/kg	1.8	<0.5		<0.5	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5		<0.5	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6		0.6	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2		1.2	
EP080/071: Total Petroleum Hydı	rocarbons							
C6 - C9 Fraction		10	mg/kg	<10	<10		<10	
C10 - C14 Fraction		50	mg/kg	<50	<50		<50	
C15 - C28 Fraction		100	mg/kg	<100	<100		<100	

Page: 8 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	BH01_0.0-0.15	BH02_0.4-0.5	BH03_0.0-0.15	BH03_0.3-0.4	TP01_0.0-0.15
	Cl	ient sampli	ing date / time	[17-Feb-2016]	[17-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[17-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-001	ES1603869-006	ES1603869-007	ES1603869-008	ES1603869-009
				Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydroca	arbons - Continued							
C29 - C36 Fraction		100	mg/kg	160	<100		<100	
^ C10 - C36 Fraction (sum)		50	mg/kg	160	<50		<50	
EP080/071: Total Recoverable Hydro	ocarbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10		<10	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10		<10	
(F1)	_							
>C10 - C16 Fraction		50	mg/kg	<50	<50		<50	
>C16 - C34 Fraction		100	mg/kg	180	<100		<100	
>C34 - C40 Fraction		100	mg/kg	120	<100		<100	
^ >C10 - C40 Fraction (sum)		50	mg/kg	300	<50		<50	
^ >C10 - C16 Fraction minus Naphthalen	1e	50	mg/kg	<50	<50		<50	
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2		<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5		<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5		<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5		<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5		<0.5	
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2		<0.2	
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5		<0.5	
Naphthalene	91-20-3	1	mg/kg	<1	<1		<1	
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	74.3	93.3		97.0	
EP068S: Organochlorine Pesticide S	Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	92.6	102		109	
EP068T: Organophosphorus Pestici			i de la compañía					
DEF	78-48-8	0.05	%	94.4	91.4		96.9	
EP075(SIM)S: Phenolic Compound S								
Phenol-d6	13127-88-3	0.5	%	101	91.4		99.2	
2-Chlorophenol-D4	93951-73-6	0.5	%	97.0	99.1		96.7	
2.4.6-Tribromophenol	118-79-6	0.5	%	114	108		113	
	110-79-0	0.0						
EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl	204.00.0	0.5	%	96.9	96.2		98.5	
1 2	321-60-8		%					
Anthracene-d10	1719-06-8	0.5	70	91.7	93.0		98.0	

Page: 9 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH01_0.0-0.15	BH02_0.4-0.5	BH03_0.0-0.15	BH03_0.3-0.4	TP01_0.0-0.15
	Cli	ent sampli	ng date / time	[17-Feb-2016]	[17-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[17-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-001	ES1603869-006	ES1603869-007	ES1603869-008	ES1603869-009
				Result	Result	Result	Result	Result
EP075(SIM)T: PAH Surrogates - Continued	d E							
4-Terphenyl-d14	1718-51-0	0.5	%	100	99.4		106	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	85.3	88.6		96.7	
Toluene-D8	2037-26-5	0.2	%	79.6	77.1		92.1	
4-Bromofluorobenzene	460-00-4	0.2	%	78.3	76.0		87.3	

Page: 10 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP01_0.4-0.6	TP01_0.8-1.0	TP02_0.0-0.15	TP02_0.4-0.6	TP02_0.8-1.0
	Cli	ent sampli	ng date / time	[17-Feb-2016]	[17-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-010	ES1603869-011	ES1603869-013	ES1603869-014	ES1603869-015
				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M CaCl ex	tract							
pH (CaCl2)		0.1	pH Unit		6.9	6.8	7.4	7.4
EA002 : pH (Soils)								
pH Value		0.1	pH Unit		8.3	7.5	8.5	8.6
EA010: Conductivity								
Electrical Conductivity @ 25°C		1	µS/cm		252	73	142	113
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	9.7		21.7		
EA150: Particle Sizing								
+75µm		1	%		61	66	65	75
+150µm		1	%		58	59	60	68
+300µm		1	%		50	46	49	56
+425µm		1	%		43	32	40	46
+600µm		1	%		37	20	32	38
+1180µm		1	%		33	16	28	34
+2.36mm		1	%		28	14	24	33
+4.75mm		1	%		22	11	20	30
+9.5mm		1	%		10	7	16	23
+19.0mm		1	%		4	7	10	11
+37.5mm		1	%		<1	<1	<1	<1
+75.0mm		1	%		<1	<1	<1	<1
EA150: Soil Classification based on P	article Size							
Clay (<2 μm)		1	%		17	16	15	11
Silt (2-60 µm)		1	%		19	16	16	13
Sand (0.06-2.00 mm)		1	%		34	54	44	43
Gravel (>2mm)		1	%		30	14	25	33
Cobbles (>6cm)		1	%		<1	<1	<1	<1
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3		2.66	2.58	2.63	2.64
EA200: AS 4964 - 2004 Identification o	f Asbestos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg	Yes		No		
Asbestos Type	1332-21-4	-		Ch		-		
Sample weight (dry)		0.01	g	93.6		106		
APPROVED IDENTIFIER:		-		S.SPOONER		S.SPOONER		

Page: 11 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP01_0.4-0.6	TP01_0.8-1.0	TP02_0.0-0.15	TP02_0.4-0.6	TP02_0.8-1.0
· · · · · · · · · · · · · · · · · · ·	Clie	ent samplii	ng date / time	[17-Feb-2016]	[17-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-010	ES1603869-011	ES1603869-013	ES1603869-014	ES1603869-015
				Result	Result	Result	Result	Result
ED006: Exchangeable Cations on Alka	line Soils - Continue	d						
Exchangeable Calcium		0.2	meq/100g		3.0	3.0	4.2	3.6
Exchangeable Magnesium		0.2	meq/100g		2.7	1.5	2.1	1.0
Exchangeable Potassium		0.2	meq/100g		<0.2	<0.2	<0.2	<0.2
Exchangeable Sodium		0.2	meq/100g		0.2	<0.2	<0.2	<0.2
Cation Exchange Capacity		0.2	meq/100g		117	89.1	129	88.2
Exchangeable Calcium Percent		0.2	%		50.7	67.9	65.0	81.1
Exchangeable Magnesium Percent		0.2	%		42.6	28.1	32.2	18.9
Exchangeable Potassium Percent		0.2	%		3.0	4.0	2.8	<0.2
Exchangeable Sodium Percent		0.2	%		3.7	<0.2	<0.2	<0.2
Calcium/Magnesium Ratio		0.2	-		1.1	2.0	2.0	3.7
Magnesium/Potassium Ratio		0.2	-		13.9	7.0	11.6	<0.2
ED007: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g					
Exchangeable Magnesium		0.1	meq/100g					
Exchangeable Potassium		0.1	meq/100g					
Exchangeable Sodium		0.1	meq/100g					
Cation Exchange Capacity		0.1	meq/100g					
Exchangeable Aluminium		0.1	meq/100g					
Exchangeable Sodium Percent		0.1	%					
Exchangeable Magnesium Percent		0.1	%					
Exchangeable Potassium Percent		0.1	%					
Exchangeable Calcium Percent		0.1	%					
Calcium/Magnesium Ratio		0.1	-					
Magnesium/Potassium Ratio		0.1	-					
D040: Sulfur as SO4 2-								
Sulfate as SO4 2-	14808-79-8	100	mg/kg		260	240		
ED093S: Soluble Major Cations								
Calcium	7440-70-2	10	mg/kg		90	40	70	60
Magnesium	7439-95-4	10	mg/kg		60	20	30	20
Sodium	7440-23-5	10	mg/kg		60	60	40	40
Potassium	7440-09-7	10	mg/kg		20	80	40	40
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	<5		6		
Cadmium	7440-43-9	1	mg/kg	<1		<1		

Page: 12 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP01_0.4-0.6	TP01_0.8-1.0	TP02_0.0-0.15	TP02_0.4-0.6	TP02_0.8-1.0
	Client sampling date / time			[17-Feb-2016]	[17-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-010	ES1603869-011	ES1603869-013	ES1603869-014	ES1603869-015
			-	Result	Result	Result	Result	Result
EG005T: Total Metals by ICP-AES - (Continued							
Chromium	7440-47-3	2	mg/kg	8		11		
Copper	7440-50-8	5	mg/kg	9		25		
Lead	7439-92-1	5	mg/kg	14		52		
Nickel	7440-02-0	2	mg/kg	5		8		
Zinc	7440-66-6	5	mg/kg	20		52		
EG035T: Total Recoverable Mercur	v by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1		<0.1		
EK057G: Nitrite as N by Discrete A								
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg		<0.1	0.2		
EK058G: Nitrate as N by Discrete A			55					
Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg		<0.1	0.7		
			mg/kg		-0.1	0.7		
EK059G: Nitrite plus Nitrate as N (N		lyser 0.1	malka		<0.1	0.9		
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg		<0.1	0.9		
EK074: Fluoride Extractable Phosph								1
Fluoride Extractable P (Bray)		1	mg/kg		1.5	2.9		
EP066: Polychlorinated Biphenyls (PCB)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1		<0.1		
EP068A: Organochlorine Pesticides	s (OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05		<0.05		
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05		<0.05		
beta-BHC	319-85-7	0.05	mg/kg	<0.05		<0.05		
gamma-BHC	58-89-9	0.05	mg/kg	<0.05		<0.05		
delta-BHC	319-86-8	0.05	mg/kg	<0.05		<0.05		
Heptachlor	76-44-8	0.05	mg/kg	<0.05		<0.05		
Aldrin	309-00-2	0.05	mg/kg	<0.05		<0.05		
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05		<0.05		
^ Total Chlordane (sum)		0.05	mg/kg	<0.05		<0.05		
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05		<0.05		
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05		<0.05		
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05		<0.05		
Dieldrin	60-57-1	0.05	mg/kg	<0.05		<0.05		
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05		<0.05		
Endrin	72-20-8	0.05	mg/kg	<0.05		<0.05		
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05		<0.05		

Page: 13 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP01_0.4-0.6	TP01_0.8-1.0	TP02_0.0-0.15	TP02_0.4-0.6	TP02_0.8-1.0
(Cl	ient sampliı	ng date / time	[17-Feb-2016]	[17-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-010	ES1603869-011	ES1603869-013	ES1603869-014	ES1603869-015
			-	Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticio	des (OC) - Continued							
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05		<0.05		
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05		<0.05		
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05		<0.05		
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05		<0.05		
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2		<0.2		
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05		<0.05		
Methoxychlor	72-43-5	0.2	mg/kg	<0.2		<0.2		
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05		<0.05		
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05		<0.05		
	0-2							
EP075(SIM)B: Polynuclear Aroma	atic Hvdrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5		<0.5		
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5		<0.5		
Acenaphthene	83-32-9	0.5	mg/kg	<0.5		<0.5		
Fluorene	86-73-7	0.5	mg/kg	<0.5		<0.5		
Phenanthrene	85-01-8	0.5	mg/kg	<0.5		<0.5		
Anthracene	120-12-7	0.5	mg/kg	<0.5		<0.5		
Fluoranthene	206-44-0	0.5	mg/kg	<0.5		<0.5		
Pyrene	129-00-0	0.5	mg/kg	<0.5		<0.5		
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5		<0.5		
Chrysene	218-01-9	0.5	mg/kg	<0.5		<0.5		
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5		<0.5		
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5		<0.5		
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5		<0.5		
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5		<0.5		
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5		<0.5		
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5		<0.5		
^ Sum of polycyclic aromatic hydroc	arbons	0.5	mg/kg	<0.5		<0.5		
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5		<0.5		
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6		0.6		
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2		1.2		
EP080/071: Total Petroleum Hydr	ocarbons							
C6 - C9 Fraction		10	mg/kg	<10		<10		
C10 - C14 Fraction		50	mg/kg	<50		<50		
C15 - C28 Fraction		100	mg/kg	<100		<100		

Page: 14 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP01_0.4-0.6	TP01_0.8-1.0	TP02_0.0-0.15	TP02_0.4-0.6	TP02_0.8-1.0
	CI	ient sampli	ng date / time	[17-Feb-2016]	[17-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-010	ES1603869-011	ES1603869-013	ES1603869-014	ES1603869-015
				Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydroca	rbons - Continued							
C29 - C36 Fraction		100	mg/kg	<100		<100		
^ C10 - C36 Fraction (sum)		50	mg/kg	<50		<50		
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10		<10		
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10		<10		
(F1)	-							
>C10 - C16 Fraction		50	mg/kg	<50		<50		
>C16 - C34 Fraction		100	mg/kg	<100		<100		
>C34 - C40 Fraction		100	mg/kg	<100		<100		
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50		<50		
^ >C10 - C16 Fraction minus Naphthalene	•	50	mg/kg	<50		<50		
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2		<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5		<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5		<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5		<0.5		
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5		<0.5		
^ Sum of BTEX		0.2	mg/kg	<0.2		<0.2		
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5		<0.5		
Naphthalene	91-20-3	1	mg/kg	<1		<1		
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	78.6		79.3		
EP068S: Organochlorine Pesticide S	urrogate							
Dibromo-DDE	21655-73-2	0.05	%	105		107		
EP068T: Organophosphorus Pesticio								
DEF	78-48-8	0.05	%	86.0		98.5		
EP075(SIM)S: Phenolic Compound S								
Phenol-d6	13127-88-3	0.5	%	107		111		
2-Chlorophenol-D4	93951-73-6	0.5	%	100		103		
2.4.6-Tribromophenol	118-79-6	0.5	%	100		116		
	110-79-0	0.0	,,,					
EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl	001 00 0	0.5	%	96.5		100		
	321-60-8							
Anthracene-d10	1719-06-8	0.5	%	95.9		98.3		

Page: 15 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP01_0.4-0.6	TP01_0.8-1.0	TP02_0.0-0.15	TP02_0.4-0.6	TP02_0.8-1.0
	Cli	ent samplii	ng date / time	[17-Feb-2016]	[17-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-010	ES1603869-011	ES1603869-013	ES1603869-014	ES1603869-015
				Result	Result	Result	Result	Result
EP075(SIM)T: PAH Surrogates - Continued								
4-Terphenyl-d14	1718-51-0	0.5	%	106		107		
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	93.8		96.4		
Toluene-D8	2037-26-5	0.2	%	93.5		90.6		
4-Bromofluorobenzene	460-00-4	0.2	%	84.1		90.6		

Page: 16 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample IE			TP03_0.0-0.15	TP03_0.4-0.6	TP03_0.8-1.0	TP04_0.0-0.15	TP04_0.4-0.6
	Cli	ent sampli	ng date / time	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-017	ES1603869-018	ES1603869-019	ES1603869-021	ES1603869-022
				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M CaCl ext	tract							
pH (CaCl2)		0.1	pH Unit	6.7	6.4	6.5	7.0	5.8
EA002 : pH (Soils)								
pH Value		0.1	pH Unit	8.6	6.9	7.8	8.7	7.0
EA010: Conductivity								
Electrical Conductivity @ 25°C		1	µS/cm	126	47	91	130	49
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%			15.3		
								1
EA150: Particle Sizing +75µm		1	%	66	51	46	66	45
+150μm		1	%	60	43	40	58	38
+300µm		1	%	46	32	28	44	28
+425μm		1	%	35	24	20	32	20
+425μm +600μm		1	%	28	18	16	24	16
+1180μm		1	%	28	15	18	24 21	18
+2.36mm		1	%	24 23	13	12	20	13
+2.55mm		1	%	20	10	5	17	8
+9.5mm		1	%	12	5	<1	9	4
+19.0mm		1	%	7	3	<1	1	
+37.5mm		1	%	<1	<1	<1	<1	<1
+75.0mm		1	%	<1	<1	<1	<1	<1
		1	70				~ 1	-1
EA150: Soil Classification based on Pa		1	0/	45	00	05	45	05
Clay (<2 µm)		1	%	<u> </u>	22	25 23	15	25
Silt (2-60 µm)		1	%				16	25 39
Sand (0.06-2.00 mm)		-	%	47	42	41	49	
Gravel (>2mm)		1	%	23 <1	14 <1	11 <1	20 <1	11 <1
Cobbles (>6cm)		I	70				<u> </u>	<u> </u>
EA152: Soil Particle Density		0.61						
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.64	2.65	2.66	2.63	2.63
EA200: AS 4964 - 2004 Identification of								
Asbestos Detected	1332-21-4	0.1	g/kg			No		
Asbestos Type	1332-21-4	-				-		
Sample weight (dry)		0.01	g			94.9		
APPROVED IDENTIFIER:		-				S.SPOONER		

Page: 17 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP03_0.0-0.15	TP03_0.4-0.6	TP03_0.8-1.0	TP04_0.0-0.15	TP04_0.4-0.6
· · · · · · · · · · · · · · · · · · ·	Clie	ent samplii	ng date / time	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-017	ES1603869-018	ES1603869-019	ES1603869-021	ES1603869-022
			-	Result	Result	Result	Result	Result
ED006: Exchangeable Cations on Alka	line Soils - Continue	d						
Exchangeable Calcium		0.2	meq/100g	4.4		3.4	5.9	
Exchangeable Magnesium		0.2	meq/100g	1.0		2.6	1.3	
Exchangeable Potassium		0.2	meq/100g	<0.2		<0.2	<0.2	
Exchangeable Sodium		0.2	meq/100g	<0.2		<0.2	<0.2	
Cation Exchange Capacity		0.2	meq/100g	109		122	144	
Exchangeable Calcium Percent		0.2	%	80.0		55.7	82.6	
Exchangeable Magnesium Percent		0.2	%	17.6		42.2	17.4	
Exchangeable Potassium Percent		0.2	%	2.4		2.1	<0.2	
Exchangeable Sodium Percent		0.2	%	<0.2		<0.2	<0.2	
Calcium/Magnesium Ratio		0.2	-	4.5		1.3	4.7	
Magnesium/Potassium Ratio		0.2	-	7.5		20.0	<0.2	
ED007: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g		3.2			2.6
Exchangeable Magnesium		0.1	meq/100g		2.1			2.2
Exchangeable Potassium		0.1	meq/100g		0.1			0.1
Exchangeable Sodium		0.1	meq/100g		0.3			0.1
Cation Exchange Capacity		0.1	meq/100g		5.6			5.1
Exchangeable Aluminium		0.1	meq/100g		<0.1			<0.1
Exchangeable Sodium Percent		0.1	%		4.7			2.6
Exchangeable Magnesium Percent		0.1	%		37.3			43.8
Exchangeable Potassium Percent		0.1	%		2.2			2.1
Exchangeable Calcium Percent		0.1	%		55.7			51.5
Calcium/Magnesium Ratio		0.1	-		1.5			1.2
Magnesium/Potassium Ratio		0.1	-		16.7			20.6
ED040: Sulfur as SO4 2-								
Sulfate as SO4 2-	14808-79-8	100	mg/kg		200		430	
ED093S: Soluble Major Cations								
Calcium	7440-70-2	10	mg/kg	90	<10	20	90	20
Magnesium	7439-95-4	10	mg/kg	30	<10	20	20	30
Sodium	7440-23-5	10	mg/kg	70	40	60	60	60
Potassium	7440-09-7	10	mg/kg	70	<10	10	80	150
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg			<5		
Cadmium	7440-43-9	1	mg/kg			<1		

Page: 18 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP03_0.0-0.15	TP03_0.4-0.6	TP03_0.8-1.0	TP04_0.0-0.15	TP04_0.4-0.6
(Clie	ent samplir	ng date / time	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-017	ES1603869-018	ES1603869-019	ES1603869-021	ES1603869-022
				Result	Result	Result	Result	Result
EG005T: Total Metals by ICP-AES - Co	ontinued							
Chromium	7440-47-3	2	mg/kg			10		
Copper	7440-50-8	5	mg/kg			16		
Lead	7439-92-1	5	mg/kg			18		
Nickel	7440-02-0	2	mg/kg			10		
Zinc	7440-66-6	5	mg/kg			43		
EG035T: Total Recoverable Mercury								
Mercury	7439-97-6	0.1	mg/kg			<0.1		
EK057G: Nitrite as N by Discrete Ana								
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg		<0.1		0.2	
		5.1					.	
EK058G: Nitrate as N by Discrete An Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg		0.1		0.5	
			ilig/kg		0.1		0.5	
EK059G: Nitrite plus Nitrate as N (NC								
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg		0.1		0.7	
EK074: Fluoride Extractable Phospho								
Fluoride Extractable P (Bray)		1	mg/kg		<1.0		2.9	
EP066: Polychlorinated Biphenyls (P	CB)							
Total Polychlorinated biphenyls		0.1	mg/kg			<0.1		
EP068A: Organochlorine Pesticides ((OC)							
alpha-BHC	319-84-6	0.05	mg/kg			<0.05		
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg			<0.05		
beta-BHC	319-85-7	0.05	mg/kg			<0.05		
gamma-BHC	58-89-9	0.05	mg/kg			<0.05		
delta-BHC	319-86-8	0.05	mg/kg			<0.05		
Heptachlor	76-44-8	0.05	mg/kg			<0.05		
Aldrin	309-00-2	0.05	mg/kg			<0.05		
Heptachlor epoxide	1024-57-3	0.05	mg/kg			<0.05		
^ Total Chlordane (sum)		0.05	mg/kg			<0.05		
trans-Chlordane	5103-74-2	0.05	mg/kg			<0.05		
alpha-Endosulfan	959-98-8	0.05	mg/kg			<0.05		
cis-Chlordane	5103-71-9	0.05	mg/kg			<0.05		
Dieldrin	60-57-1	0.05	mg/kg			<0.05		
4.4`-DDE	72-55-9	0.05	mg/kg			<0.05		
Endrin	72-20-8	0.05	mg/kg			<0.05		
beta-Endosulfan	33213-65-9	0.05	mg/kg			<0.05		

Page: 19 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP03_0.0-0.15	TP03_0.4-0.6	TP03_0.8-1.0	TP04_0.0-0.15	TP04_0.4-0.6
	Cl	ient sampliı	ng date / time	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-017	ES1603869-018	ES1603869-019	ES1603869-021	ES1603869-022
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticio	des (OC) - Continued							
^ Endosulfan (sum)	115-29-7	0.05	mg/kg			<0.05		
4.4`-DDD	72-54-8	0.05	mg/kg			<0.05		
Endrin aldehyde	7421-93-4	0.05	mg/kg			<0.05		
Endosulfan sulfate	1031-07-8	0.05	mg/kg			<0.05		
4.4`-DDT	50-29-3	0.2	mg/kg			<0.2		
Endrin ketone	53494-70-5	0.05	mg/kg			<0.05		
Methoxychlor	72-43-5	0.2	mg/kg			<0.2		
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg			<0.05		
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg			<0.05		
	0-2							
EP075(SIM)B: Polynuclear Aroma	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg			<0.5		
Acenaphthylene	208-96-8	0.5	mg/kg			<0.5		
Acenaphthene	83-32-9	0.5	mg/kg			<0.5		
Fluorene	86-73-7	0.5	mg/kg			<0.5		
Phenanthrene	85-01-8	0.5	mg/kg			<0.5		
Anthracene	120-12-7	0.5	mg/kg			<0.5		
Fluoranthene	206-44-0	0.5	mg/kg			<0.5		
Pyrene	129-00-0	0.5	mg/kg			<0.5		
Benz(a)anthracene	56-55-3	0.5	mg/kg			<0.5		
Chrysene	218-01-9	0.5	mg/kg			<0.5		
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg			<0.5		
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg			<0.5		
Benzo(a)pyrene	50-32-8	0.5	mg/kg			<0.5		
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg			<0.5		
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg			<0.5		
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg			<0.5		
^ Sum of polycyclic aromatic hydroc	arbons	0.5	mg/kg			<0.5		
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg			<0.5		
[^] Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg			0.6		
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg			1.2		
EP080/071: Total Petroleum Hydr	ocarbons							
C6 - C9 Fraction		10	mg/kg			<10		
C10 - C14 Fraction		50	mg/kg			<50		
C15 - C28 Fraction		100	mg/kg			<100		

Page: 20 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP03_0.0-0.15	TP03_0.4-0.6	TP03_0.8-1.0	TP04_0.0-0.15	TP04_0.4-0.6
· · ·	Cl	ient sampli	ng date / time	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-017	ES1603869-018	ES1603869-019	ES1603869-021	ES1603869-022
				Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydroc	arbons - Continued							
C29 - C36 Fraction		100	mg/kg			<100		
^ C10 - C36 Fraction (sum)		50	mg/kg			<50		
EP080/071: Total Recoverable Hydr	ocarbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg			<10		
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg			<10		
>C10 - C16 Fraction		50	mg/kg			<50		
>C16 - C34 Fraction		100	mg/kg			<100		
>C34 - C40 Fraction		100	mg/kg			<100		
>C10 - C40 Fraction (sum)		50	mg/kg			<50		
>C10 - C16 Fraction minus Naphthale	ne	50	mg/kg			<50		
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg			<0.2		
Toluene	108-88-3	0.5	mg/kg			<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg			<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg			<0.5		
ortho-Xylene	95-47-6	0.5	mg/kg			<0.5		
Sum of BTEX		0.2	mg/kg			<0.2		
∖ Total Xylenes	1330-20-7	0.5	mg/kg			<0.5		
Naphthalene	91-20-3	1	mg/kg			<1		
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%			80.1		
EP068S: Organochlorine Pesticide	Surrogate							
Dibromo-DDE	21655-73-2	0.05	%			112		
EP068T: Organophosphorus Pestic	ide Surrogate							
DEF	78-48-8	0.05	%			93.1		
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	0.5	%			106		
2-Chlorophenol-D4	93951-73-6	0.5	%			99.1		
2.4.6-Tribromophenol	118-79-6	0.5	%			113		
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%			100.0		
Anthracene-d10	1719-06-8	0.5	%			98.2		

Page: 21 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP03_0.0-0.15	TP03_0.4-0.6	TP03_0.8-1.0	TP04_0.0-0.15	TP04_0.4-0.6
	Cli	ent samplii	ng date / time	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603869-017	ES1603869-018	ES1603869-019	ES1603869-021	ES1603869-022
				Result	Result	Result	Result	Result
EP075(SIM)T: PAH Surrogates - Continued								
4-Terphenyl-d14	1718-51-0	0.5	%			107		
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%			94.8		
Toluene-D8	2037-26-5	0.2	%			90.9		
4-Bromofluorobenzene	460-00-4	0.2	%			89.5		

Page: 22 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL Matrix: SOIL)		Clie	ent sample ID	TP04_1.4-1.5	TP05_0.0-0.15	TP05_0.4-0.6	TP05_0.8-1.0	
,	Cli	ient sampli	ng date / time	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	
Compound	CAS Number	LOR	Unit	ES1603869-024	ES1603869-025	ES1603869-026	ES1603869-027	
				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M CaCl ex	tract							
pH (CaCl2)		0.1	pH Unit		5.8	5.8	6.0	
EA002 : pH (Soils)								
pH Value		0.1	pH Unit		7.3	7.0	7.8	
EA010: Conductivity								
Electrical Conductivity @ 25°C		1	µS/cm		16	48	45	
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	11.2			12.8	
EA150: Particle Sizing								
+75µm		1	%		59	48	72	
+150µm		1	%		50	40	59	
+300µm		1	%		36	28	41	
+425µm		1	%		25	22	27	
+600µm		1	%		18	17	13	
+1180μm		1	%		15	15	7	
+2.36mm		1	%		13	14	5	
+4.75mm		1	%		10	9	3	
+9.5mm		1	%		4	<1	<1	
+19.0mm		1	%		2	<1	<1	
+37.5mm		1	%		<1	<1	<1	
+75.0mm		1	%		<1	<1	<1	
A150: Soil Classification based on Pa	article Size							
Clay (<2 μm)		1	%		17	21	11	
Silt (2-60 µm)		1	%		20	26	16	
Sand (0.06-2.00 mm)		1	%		50	39	67	
Gravel (>2mm)		1	%		13	14	6	
Cobbles (>6cm)		1	%		<1	<1	<1	
A152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3		2.48	2.62	2.60	
EA200: AS 4964 - 2004 Identification o	f Asbesto <u>s in Soils</u>							
Asbestos Detected	1332-21-4	0.1	g/kg	No			No	
Asbestos Type	1332-21-4	-		-			-	
Sample weight (dry)		0.01	g	101			101	
APPROVED IDENTIFIER:		-		S.SPOONER			S.SPOONER	

Page: 23 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP04_1.4-1.5	TP05_0.0-0.15	TP05_0.4-0.6	TP05_0.8-1.0	
	Clie	ent samplir	ng date / time	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	
Compound	CAS Number	LOR	Unit	ES1603869-024	ES1603869-025	ES1603869-026	ES1603869-027	
				Result	Result	Result	Result	Result
ED006: Exchangeable Cations on Alka	line Soils - Continue	d						
Exchangeable Calcium		0.2	meq/100g		3.8		3.1	
Exchangeable Magnesium		0.2	meq/100g		1.8		1.4	
Exchangeable Potassium		0.2	meq/100g		0.2		<0.2	
Exchangeable Sodium		0.2	meq/100g		<0.2		<0.2	
Cation Exchange Capacity		0.2	meq/100g		113		90.1	
Exchangeable Calcium Percent		0.2	%		68.2		69.4	
Exchangeable Magnesium Percent		0.2	%		29.5		27.8	
Exchangeable Potassium Percent		0.2	%		2.3		2.8	
Exchangeable Sodium Percent		0.2	%		<0.2		<0.2	
Calcium/Magnesium Ratio		0.2	-		2.2		2.3	
Magnesium/Potassium Ratio		0.2	-		8.5		9.8	
ED007: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g			3.6		
Exchangeable Magnesium		0.1	meq/100g			1.6		
Exchangeable Potassium		0.1	meq/100g			0.1		
Exchangeable Sodium		0.1	meq/100g			0.2		
Cation Exchange Capacity		0.1	meq/100g			5.6		
Exchangeable Aluminium		0.1	meq/100g			<0.1		
Exchangeable Sodium Percent		0.1	%			4.4		
Exchangeable Magnesium Percent		0.1	%			29.4		
Exchangeable Potassium Percent		0.1	%			2.2		
Exchangeable Calcium Percent		0.1	%			63.9		
Calcium/Magnesium Ratio		0.1	-			2.2		
Magnesium/Potassium Ratio		0.1	-			13.3		
ED040: Sulfur as SO4 2-								
Sulfate as SO4 2-	14808-79-8	100	mg/kg					
ED093S: Soluble Major Cations								
Calcium	7440-70-2	10	mg/kg		20	20	20	
Magnesium	7439-95-4	10	mg/kg		20	20	10	
Sodium	7440-23-5	10	mg/kg		40	60	60	
Potassium	7440-09-7	10	mg/kg		120	100	70	
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	5			<5	
Cadmium	7440-43-9	1	mg/kg	<1			<1	

Page: 24 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP04_1.4-1.5	TP05_0.0-0.15	TP05_0.4-0.6	TP05_0.8-1.0	
·····	Clie	ent samplin	ng date / time	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	
Compound	CAS Number	LOR	Unit	ES1603869-024	ES1603869-025	ES1603869-026	ES1603869-027	
Compound				Result	Result	Result	Result	Result
EG005T: Total Metals by ICP-AES - Co	ntinued							
Chromium	7440-47-3	2	mg/kg	10			7	
Copper	7440-50-8	5	mg/kg	26			40	
Lead	7439-92-1	5	mg/kg	23			114	
Nickel	7440-02-0	2	mg/kg	18			<2	
Zinc	7440-66-6	5	mg/kg	81			10	
EG035T: Total Recoverable Mercury b								
Mercury	7439-97-6	0.1	mg/kg	<0.1			<0.1	
EK057G: Nitrite as N by Discrete Anal			5 5					
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg					
		0.1	inging					
EK058G: Nitrate as N by Discrete Ana		0.1	ma/ka					
Nitrate as N (Sol.)	14797-55-8		mg/kg					
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Anal							
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg					
EK074: Fluoride Extractable Phosphore	rus (Bray)							
Fluoride Extractable P (Bray)		1	mg/kg					
EP066: Polychlorinated Biphenyls (PC	:В)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1			<0.1	
EP068A: Organochlorine Pesticides (0	DC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05			<0.05	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05			<0.05	
beta-BHC	319-85-7	0.05	mg/kg	<0.05			<0.05	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05			<0.05	
delta-BHC	319-86-8	0.05	mg/kg	<0.05			<0.05	
Heptachlor	76-44-8	0.05	mg/kg	<0.05			<0.05	
Aldrin	309-00-2	0.05	mg/kg	<0.05			<0.05	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05			<0.05	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05			<0.05	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05			<0.05	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05			<0.05	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05			<0.05	
Dieldrin	60-57-1	0.05	mg/kg	<0.05			<0.05	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05			<0.05	
Endrin	72-20-8	0.05	mg/kg	<0.05			<0.05	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05			<0.05	

Page: 25 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL		Clie	ent sample ID	TP04_1.4-1.5	TP05_0.0-0.15	TP05_0.4-0.6	TP05_0.8-1.0	
Matrix: SOIL)		ient sampli	ng date / time	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	
				· ·				
Compound	CAS Number	LOR	Unit	ES1603869-024	ES1603869-025	ES1603869-026	ES1603869-027	
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticid								
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05			<0.05	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05			<0.05	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05			<0.05	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05			<0.05	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2			<0.2	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05			<0.05	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2			<0.2	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05			<0.05	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05			<0.05	
	0-2							
EP075(SIM)B: Polynuclear Aroma	tic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5			<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5			<0.5	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5			<0.5	
Fluorene	86-73-7	0.5	mg/kg	<0.5			<0.5	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5			<0.5	
Anthracene	120-12-7	0.5	mg/kg	<0.5			<0.5	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5			<0.5	
Pyrene	129-00-0	0.5	mg/kg	<0.5			<0.5	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5			<0.5	
Chrysene	218-01-9	0.5	mg/kg	<0.5			<0.5	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5			<0.5	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5			<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5			<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5			<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5			<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5			<0.5	
^ Sum of polycyclic aromatic hydroca		0.5	mg/kg	<0.5			<0.5	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5			<0.5	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6			0.6	
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2			1.2	
EP080/071: Total Petroleum Hydro C6 - C9 Fraction		10	ma/ka	<10			<10	
C6 - C9 Fraction C10 - C14 Fraction		50	mg/kg	<50			<50	
			mg/kg					
C15 - C28 Fraction		100	mg/kg	<100			<100	

Page: 26 of 27Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

			TP04_1.4-1.5	TP05_0.0-0.15	TP05_0.4-0.6	TP05_0.8-1.0	
Clie	ent sampli	ng date / time	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	
CAS Number	LOR	Unit	ES1603869-024	ES1603869-025	ES1603869-026	ES1603869-027	
			Result	Result	Result	Result	Result
bons - Continued							
	100	mg/kg	<100			<100	
	50	mg/kg	<50			<50	
arbons - NEPM 201	3 Fractio	าร					
C6_C10	10	mg/kg	<10			<10	
C6_C10-BTEX	10	mg/kg	<10			<10	
_							
	50	mg/kg	<50			<50	
	100	mg/kg	<100			<100	
	100	mg/kg	<100			<100	
	50	mg/kg	<50			<50	
	50	mg/kg	<50			<50	
71-43-2	0.2	mg/kg	<0.2			<0.2	
108-88-3	0.5	mg/kg	<0.5			<0.5	
100-41-4	0.5	mg/kg	<0.5			<0.5	
108-38-3 106-42-3	0.5	mg/kg	<0.5			<0.5	
95-47-6	0.5	mg/kg	<0.5			<0.5	
	0.2	mg/kg	<0.2			<0.2	
1330-20-7	0.5	mg/kg	<0.5			<0.5	
91-20-3	1	mg/kg	<1			<1	
2051-24-3	0.1	%	78.0			75.3	
rrogate							
21655-73-2	0.05	%	107			109	
	0.05	%	75.9			97.7	
_	0.5	%	99.2			102	
110-79-0	0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
221 60 0	0.5	0/2	95.7			02.0	
	CAS Number	CAS Number LOR Dons - Continued 100 50 arbons - NEPM 2013 Fraction C6_C10 C6_C10-BTEX 10 C6_C10-BTEX 100 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 108-38-3 0.5 95-47-6 0.5 108-38-3 106-42-3 91-20-3 1 0.2 1330-20-7 0.5 91-20-3 1 0.5 92051-24-3 <td>Soons - Continued 100 mg/kg 50 mg/kg arbons - NEPM 2013 Fractions C6_C10 10 mg/kg C6_C10-BTEX 10 mg/kg 50 mg/kg 108-38-3 0.5 mg/kg 95-47-6 0.5 mg/kg 13130-20-7 0.5 mg/kg <</td> <td>CAS Number LOR Unit ES1603869-024 Result cons - Continued 100 mg/kg <100</td> 50 mg/kg <50	Soons - Continued 100 mg/kg 50 mg/kg arbons - NEPM 2013 Fractions C6_C10 10 mg/kg C6_C10-BTEX 10 mg/kg 50 mg/kg 108-38-3 0.5 mg/kg 95-47-6 0.5 mg/kg 13130-20-7 0.5 mg/kg <	CAS Number LOR Unit ES1603869-024 Result cons - Continued 100 mg/kg <100	CAS Number LOR Unit ES1603869-024 ES1603869-025 new uit Result Result Result 100 mg/kg <100	CAS Number LOR Unit ES1603869-024 ES1603869-025 ES1603869-026 nons - Continued Result Result Result Result Result 000 mg/kg <100	CAS Number LOR Unit ES1603869.024 ES1603869.025 ES1603869.026 ES1603869.027 Result Result Result Result Result Result Result 003 0 mg/kg <100

Page : 27 of 27 Work Order : ES1603869 Client : JACOBS GROUP (AUSTRALIA) PTY LTD Project : M2 PARK

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP04_1.4-1.5	TP05_0.0-0.15	TP05_0.4-0.6	TP05_0.8-1.0	
	Cli	ent sampli	ng date / time	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	[18-Feb-2016]	
Compound	CAS Number	LOR	Unit	ES1603869-024	ES1603869-025	ES1603869-026	ES1603869-027	
				Result	Result	Result	Result	Result
EP075(SIM)T: PAH Surrogates - Continued								
4-Terphenyl-d14	1718-51-0	0.5	%	111			103	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	104			105	
Toluene-D8	2037-26-5	0.2	%	99.0			101	
4-Bromofluorobenzene	460-00-4	0.2	%	92.5			94.1	

Analytical Results

Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbesto	s in Soils	
EA200: Description	BH01_0.0-0.15 - [17-Feb-2016]	Mid brown clay soil with grey rocks.
EA200: Description	BH02_0.4-0.5 - [17-Feb-2016]	Mid brown sandy soil with grey rocks.
EA200: Description	BH03_0.3-0.4 - [18-Feb-2016]	Mid brown clay soil with grey rocks.
EA200: Description	TP01_0.4-0.6 - [17-Feb-2016]	Mid brown clay soil with one loose bundle of friable asbestos fibres approx 3 x 1 x 0.5 mm.
EA200: Description	TP02_0.0-0.15 - [18-Feb-2016]	Mid brown clay soil with grey rocks.
EA200: Description	TP03_0.8-1.0 - [18-Feb-2016]	Mid brown clay soil with grey rocks.
EA200: Description	TP04_1.4-1.5 - [18-Feb-2016]	Mid grey - brown clay soil with grey rocks.
EA200: Description	TP05_0.8-1.0 - [18-Feb-2016]	Mid grey - brown clay soil with grey rocks.

QUALITY CONTROL REPORT

Work Order	ES1603869	Page	: 1 of 13
Client	: JACOBS GROUP (AUSTRALIA) PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: BLAIR CUMMINGS	Contact	
Address	: 100 CHRISTIE STREET P O BOX 164	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	ST LEONARDS NSW, AUSTRALIA 2065		
E-mail	: blair.cummings@jacobs.com	E-mail	:
Telephone	+61 02 9928 2100	Telephone	: +61-2-8784 8555
Facsimile	: +61 02 9928 2272	Facsimile	: +61-2-8784 8500
Project	: M2 PARK	QC Level	: NEPM 2013 B3 & ALS QC Standard
Order number	: IA104600	Date Samples Received	: 19-Feb-2016
C-O-C number	: 233253-233255	Date Analysis Commenced	: 23-Feb-2016
Sampler	BLAIR CUMMINGS	Issue Date	: 29-Feb-2016
Site	:	No. of samples received	: 28
Quote number	:	No. of samples analysed	: 19

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference # = Indicates failed QC

NATA Accredited Signatories

Laboratory 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Accredited for	Signatories	Position	Accreditation Category
compliance with ISO/IEC 17025.	Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
	Ashesh Patel	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
	Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
	Dian Dao		Sydney Inorganics, Smithfield, NSW
	Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW
	Pabi Subba	Senior Organic Chemist	Sydney Inorganics, Smithfield, NSW
			Sydney Organics, Smithfield, NSW
	RICHARD TEA	Lab technician	Sydney Inorganics, Smithfield, NSW
	Shaun Spooner	Asbestos Identifier	Newcastle - Asbestos, Mayfield West, NSW
	Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA001: pH in soil us	sing 0.01M CaCl extract	(QC Lot: 375914)							
ES1603869-001	BH01_0.0-0.15	EA001: pH (CaCl2)		0.1	pH Unit	5.8	5.8	0.00	0% - 20%
ES1603869-021	TP04_0.0-0.15	EA001: pH (CaCl2)		0.1	pH Unit	7.0	7.0	0.00	0% - 20%
EA002 : pH (Soils)	(QC Lot: 373166)								
ES1603869-001	BH01_0.0-0.15	EA002: pH Value		0.1	pH Unit	6.4	6.4	0.00	0% - 20%
EA002 : pH (Soils)	(QC Lot: 374559)								
ES1603862-002	Anonymous	EA002: pH Value		0.1	pH Unit	5.2	5.1	3.50	0% - 20%
ES1603869-007	BH03_0.0-0.15	EA002: pH Value		0.1	pH Unit	7.9	7.9	0.00	0% - 20%
EA002 : pH (Soils)	(QC Lot: 374564)								
ES1604006-008	Anonymous	EA002: pH Value		0.1	pH Unit	6.7	6.7	0.00	0% - 20%
ES1603869-026	TP05_0.4-0.6	EA002: pH Value		0.1	pH Unit	7.0	7.0	0.00	0% - 20%
EA010: Conductivity	y (QC Lot: 373167)								
ES1603869-001	BH01_0.0-0.15	EA010: Electrical Conductivity @ 25°C		1	μS/cm	134	139	4.03	0% - 20%
EA010: Conductivity	v (QC Lot: 374560)						1		
ES1603869-007	BH03_0.0-0.15	EA010: Electrical Conductivity @ 25°C		1	µS/cm	76	79	4.51	0% - 20%
ES1603869-026	 TP05_0.4-0.6	EA010: Electrical Conductivity @ 25°C		1	μS/cm	48	44	8.32	0% - 20%
EA055: Moisture Co	ontent (QC Lot: 372811)				-				
ES1603865-013	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1	%	21.6	21.7	0.762	0% - 20%
ES1603869-013	TP02_0.0-0.15	EA055-103: Moisture Content (dried @ 103°C)		1	%	21.7	21.1	2.44	0% - 20%
EA055: Moisture Co	ontent (QC Lot: 372812)								
ES1603869-025	TP05_0.0-0.15	EA055-103: Moisture Content (dried @ 103°C)		1	%	19.1	23.1	19.2	0% - 20%
ES1603877-004	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1	%	21.5	22.3	3.37	0% - 20%
ED006: Exchangeat	ole Cations on Alkaline S								
ES1603869-007	BH03_0.0-0.15	ED006: Calcium/Magnesium Ratio		0.1	-	0.9	0.9	0.00	No Limit
		ED006: Magnesium/Potassium Ratio		0.1	-	47.4	46.8	1.38	0% - 20%
		ED006: Exchangeable Calcium Percent		0.1	%	46.5	46.9	0.927	0% - 20%
		ED006: Exchangeable Magnesium Percent		0.1	%	50.3	49.8	0.896	0% - 20%
		ED006: Exchangeable Potassium Percent		0.1	%	1.0	1.1	0.00	No Limit
		ED006: Exchangeable Sodium Percent		0.1	%	2.2	2.2	0.00	0% - 50%
		ED006: Cation Exchange Capacity		0.1	meq/100g	242	241	0.483	0% - 20%
		ED006: Exchangeable Calcium		0.1	meq/100g	5.6	5.6	0.00	0% - 20%
		ED006: Exchangeable Magnesium		0.1	meq/100g	6.0	6.0	0.00	0% - 20%
		ED006: Exchangeable Potassium		0.1	meq/100g	<0.2	<0.2	0.00	No Limit
		ED006: Exchangeable Sodium		0.1	meq/100g	0.3	0.3	0.00	No Limit
ES1603869-025	TP05_0.0-0.15	ED006: Calcium/Magnesium Ratio		0.1	-	2.2	2.2	0.00	0% - 50%

Page: 4 of 13Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED006: Exchangeab	le Cations on Alkaline S	oils (QC Lot: 376385) - continued							
ES1603869-025	TP05_0.0-0.15	ED006: Magnesium/Potassium Ratio		0.1	-	8.5	8.6	0.00	0% - 20%
		ED006: Exchangeable Calcium Percent		0.1	%	68.2	68.2	0.00	0% - 20%
		ED006: Exchangeable Magnesium Percent		0.1	%	29.5	29.5	0.00	0% - 20%
		ED006: Exchangeable Potassium Percent		0.1	%	2.3	2.3	0.00	0% - 50%
		ED006: Exchangeable Sodium Percent		0.1	%	<0.2	<0.2	0.00	No Limit
		ED006: Cation Exchange Capacity		0.1	meq/100g	113	113	0.00	0% - 20%
		ED006: Exchangeable Calcium		0.1	meq/100g	3.8	3.8	0.00	0% - 50%
		ED006: Exchangeable Magnesium		0.1	meq/100g	1.8	1.8	0.00	No Limit
		ED006: Exchangeable Potassium		0.1	meq/100g	0.2	0.2	0.00	No Limit
		ED006: Exchangeable Sodium		0.1	meq/100g	<0.2	<0.2	0.00	No Limit
ED007: Exchangeab	le Cations (QC Lot: 377	073)							
ES1603862-002	Anonymous	ED007: Exchangeable Calcium Percent		0.1	%	67.2	66.6	0.843	0% - 20%
	,	ED007: Exchangeable Magnesium Percent		0.1	%	14.6	14.3	2.58	0% - 20%
		ED007: Exchangeable Potassium Percent		0.1	%	14.7	15.0	2.32	0% - 20%
		ED007: Exchangeable Sodium Percent		0.1	%	3.5	4.1	15.5	0% - 20%
		ED007: Cation Exchange Capacity		0.1	meg/100g	0.5	0.6	0.00	No Limit
		ED007: Exchangeable Aluminium		0.1	meg/100g	<0.1	<0.1	0.00	No Limit
		ED007: Exchangeable Calcium		0.1	meg/100g	0.4	0.4	0.00	No Limit
		ED007: Exchangeable Magnesium		0.1	meg/100g	<0.1	<0.1	0.00	No Limit
		ED007: Exchangeable Potassium		0.1	meg/100g	<0.1	<0.1	0.00	No Limit
		ED007: Exchangeable Sodium		0.1	meg/100g	<0.1	<0.1	0.00	No Limit
ES1603862-017	Anonymous	ED007: Calcium/Magnesium Ratio		0.1	-	9.6	9.7	1.48	0% - 20%
		ED007: Magnesium/Potassium Ratio		0.1	-	1.1	1.1	0.00	0% - 50%
		ED007: Exchangeable Calcium Percent		0.1	%	83.4	83.6	0.208	0% - 20%
		ED007: Exchangeable Magnesium Percent		0.1	%	8.6	8.5	1.21	0% - 20%
		ED007: Exchangeable Potassium Percent		0.1	%	7.6	7.5	0.00	0% - 20%
		ED007: Exchangeable Sodium Percent		0.1	%	0.4	0.4	0.00	No Limit
		ED007: Cation Exchange Capacity		0.1	meg/100g	8.0	8.1	1.43	0% - 20%
		ED007: Exchangeable Aluminium		0.1	meg/100g	<0.1	<0.1	0.00	No Limit
		ED007: Exchangeable Calcium		0.1	meg/100g	6.7	6.8	1.64	0% - 20%
		ED007: Exchangeable Magnesium		0.1	meg/100g	0.7	0.7	0.00	No Limit
		ED007: Exchangeable Potassium		0.1	meg/100g	0.6	0.6	0.00	No Limit
		ED007: Exchangeable Sodium		0.1	meq/100g	<0.1	<0.1	0.00	No Limit
D040T · Total Sulfa	te by ICPAES (QC Lot: 3				1 0				
S1603869-001	BH01 0.0-0.15	ED040T: Sulfate as SO4 2-	14808-79-8	100	mg/kg	820	820	0.00	No Limit
ES1603983-008	Anonymous	ED0401: Sulfate as SO4 2- ED040T: Sulfate as SO4 2-	14808-79-8	100	mg/kg	320	440	31.0	No Limit
	jor Cations (QC Lot: 374		1-000-79-0	100	iiig/kg	520		51.0	
ES1603661-012	Anonymous	ED093S: Calcium	7440-70-2	10	mg/kg	90	90	0.00	No Limit
		ED093S: Magnesium	7439-95-4	10	mg/kg	110	100	0.00	0% - 50%
		ED093S: Potassium	7440-09-7	10	mg/kg	70	60	0.00	No Limit

Page	5 of 13
Work Order	: ES1603869
Client	: JACOBS GROUP (AUSTRALIA) PTY LTD
Project	: M2 PARK

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED093S: Soluble Ma	ijor Cations (QC Lot: 374556) - continued							
ES1603661-012	Anonymous	ED093S: Sodium	7440-23-5	10	mg/kg	1550	1580	2.25	0% - 20%
ES1603661-002	Anonymous	ED093S: Calcium	7440-70-2	10	mg/kg	80	80	0.00	No Limit
		ED093S: Magnesium	7439-95-4	10	mg/kg	120	140	16.3	0% - 50%
		ED093S: Potassium	7440-09-7	10	mg/kg	40	40	0.00	No Limit
		ED093S: Sodium	7440-23-5	10	mg/kg	1410	1490	5.13	0% - 20%
ED093S: Soluble Ma	jor Cations (QC Lot: 374563								
ES1603869-021	TP04_0.0-0.15	ED093S: Calcium	7440-70-2	10	mg/kg	90	90	0.00	No Limit
	_	ED093S: Magnesium	7439-95-4	10	mg/kg	20	30	0.00	No Limit
		ED093S: Potassium	7440-09-7	10	mg/kg	80	70	0.00	No Limit
		ED093S: Sodium	7440-23-5	10	mg/kg	60	60	0.00	No Limit
EG005T: Total Meta	Is by ICP-AES (QC Lot: 3731	43)							
ES1603863-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	3	6	46.3	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	5	7	41.4	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	6	9	35.2	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	8	13	50.2	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	25	39	43.1	No Limit
ES1603865-015	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	5	6	24.6	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	4	4	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	119	116	2.78	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	134	123	8.96	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	114	94	19.7	0% - 20%
EG035T: Total Reco	overable Mercury by FIMS (C	QC Lot: 373144)							
ES1603863-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1603865-015	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EK057G: Nitrite as	N by Discrete Analyser (QC	Lot: 373170)							
ES1603869-001	BH01 0.0-0.15	EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EK057G: Nitrite as	N by Discrete Analyser (QC								
ES1603869-013	TP02 0.0-0.15	EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	0.2	0.2	0.00	No Limit
	_	rete Analyser (QC Lot: 373169)							
ES1603869-001	BH01 0.0-0.15			0.1	mg/kg	5.1	5.1	0.00	0% - 20%
	_	EK059G: Nitrite + Nitrate as N (Sol.)		0.1	iiig/kg	5.1	5.1	0.00	0 /0 - 20 /0
-		rete Analyser (QC Lot: 374562)		0.1		0.0	0.0	0.00	Nie 1 Jacob
ES1603869-013	TP02_0.0-0.15	EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	0.9	0.9	0.00	No Limit
	ractable Phosphorus (Bray)	(QC Lot: 372398)							
ES1603869-001	BH01_0.0-0.15	EK074: Fluoride Extractable P (Bray)		1	mg/kg	8.8	8.8	0.00	No Limit

Page	: 6 of 13
Work Order	: ES1603869
Client	: JACOBS GROUP (AUSTRALIA) PTY LTD
Project	: M2 PARK

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP066: Polychlorina	ated Biphenyls (PCB)(QC Lot: 371483)							
ES1603869-001	BH01_0.0-0.15	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP068A: Organochl	lorine Pesticides (OC) (
ES1603869-001	BH01_0.0-0.15	EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP075(SIM)B: Polyr	nuclear Aromatic Hydro	carbons (QC Lot: 371482)							
ES1603869-001	BH01_0.0-0.15	EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	0.7	<0.5	33.2	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page: 7 of 13Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Poly	nuclear Aromatic Hydro	ocarbons (QC Lot: 371482) - continued							
ES1603869-001	BH01_0.0-0.15	EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	0.6	<0.5	23.2	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	1.8	<0.5	113	No Limit
		hydrocarbons							
EP080/071: Total P	etroleum Hydrocarbons	s (QC Lot: 371481)							
ES1603896-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES1603869-001	BH01_0.0-0.15	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	160	140	13.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total P	etroleum Hydrocarbons	s (QC Lot: 371567)							
ES1603869-001	BH01 0.0-0.15	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
ES1603877-051	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total R		ons - NEPM 2013 Fractions (QC Lot: 371481)		-	5 5				
ES1603896-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
2010000000001	7 thonymous	EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES1603869-001	BH01_0.0-0.15	EP071: >C16 - C34 Fraction		100	mg/kg	180	180	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	120	110	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ED020/074, Total B	agoverable Hydrogarba	ons - NEPM 2013 Fractions (QC Lot: 371567)						0.00	
EP080/071. Total R	BH01 0.0-0.15		C6_C10	10	ma/ka	<10	<10	0.00	No Limit
ES1603877-051	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg mg/kg	<10	<10	0.00	No Limit
		EP080: C6 - C10 Fraction	0_010	10	nig/kg	<10	<10	0.00	
EP080: BTEXN (Q	,								
ES1603869-001	BH01_0.0-0.15	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3	0.5		-0.5	-0.5	0.00	N a 1 bash
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Toluene	108-88-3 91-20-3	0.5	mg/kg	<0.5	<0.5 <1	0.00	No Limit
E04000077.054	A	EP080: Naphthalene		1	mg/kg			0.00	No Limit
ES1603877-051	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	0.4	0.5 <0.5	0.00	No Limit No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5		
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3 95-47-6	0.5	ma/ka	<0.5	<0.5	0.00	No Limit
		EP080: ortho-Xylene	95-47-6 108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit No Limit
		EP080: Toluene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
[EP080: Naphthalene	91-20-3	I	mg/kg	<1	<u></u>	0.00	

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA010: Conductivity (QCLot: 373167)									
EA010: Electrical Conductivity @ 25°C		1	µS/cm	<1	1412 µS/cm	95.9	92	108	
EA010: Conductivity (QCLot: 374560)									
EA010: Electrical Conductivity @ 25°C		1	µS/cm	<1	1412 µS/cm	97.5	92	108	
ED006: Exchangeable Cations on Alkaline Soils(QCLot: 376385)								
ED006: Calcium/Magnesium Ratio		0.1	-	<0.1					
ED006: Cation Exchange Capacity		0.1	meq/100g	<0.1					
ED006: Exchangeable Calcium		0.1	meq/100g	<0.1	1 meq/100g	105	80	110	
ED006: Exchangeable Calcium Percent		0.1	%	<0.1					
ED006: Exchangeable Magnesium		0.1	meq/100g	<0.1	1.67 meq/100g	88.6	80	110	
ED006: Exchangeable Magnesium Percent		0.1	%	<0.1					
ED006: Exchangeable Potassium		0.1	meq/100g	<0.1	0.51 meq/100g	87.0	80	110	
ED006: Exchangeable Potassium Percent		0.1	%	<0.1					
ED006: Exchangeable Sodium		0.1	meq/100g	<0.1	0.87 meq/100g	86.0	80	110	
ED006: Exchangeable Sodium Percent		0.1	%	<0.1					
ED006: Magnesium/Potassium Ratio		0.1	-	<0.1					
ED007: Exchangeable Cations (QCLot: 377073)									
ED007: Calcium/Magnesium Ratio		0.1	-	<0.1					
ED007: Cation Exchange Capacity		0.1	meq/100g	<0.1					
ED007: Exchangeable Aluminium		0.1	meq/100g	<0.1					
ED007: Exchangeable Calcium		0.1	meq/100g	<0.1	1 meq/100g	94.0	76	122	
ED007: Exchangeable Calcium Percent		0.1	%	<0.1					
ED007: Exchangeable Magnesium		0.1	meq/100g	<0.1	1.67 meq/100g	85.6	76	118	
ED007: Exchangeable Magnesium Percent		0.1	%	<0.1					
ED007: Exchangeable Potassium		0.1	meq/100g	<0.1	0.51 meq/100g	92.4	80	120	
ED007: Exchangeable Potassium Percent		0.1	%	<0.1					
ED007: Exchangeable Sodium		0.1	meq/100g	<0.1	0.87 meq/100g	99.0	80	120	
ED007: Exchangeable Sodium Percent		0.1	%	<0.1					
ED007: Magnesium/Potassium Ratio		0.1	-	<0.1					
ED040T : Total Sulfate by ICPAES (QCLot: 372982)								
ED040T: Sulfate as SO4 2-	14808-79-8	100	mg/kg	<100					
ED093S: Soluble Major Cations (QCLot: 373168)									
ED093S: Calcium	7440-70-2	10	mg/kg	<10	50 mg/kg	106	85	119	
ED093S: Magnesium	7439-95-4	10	mg/kg	<10	50 mg/kg	100	85	119	
ED093S: Potassium	7440-09-7	10	mg/kg	<10	50 mg/kg	104	83	125	

Page	: 9 of 13
Work Order	ES1603869
Client	: JACOBS GROUP (AUSTRALIA) PTY LTD
Project	: M2 PARK

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
	i			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
ED093S: Soluble Major Cations (QCLot: 373168) - continu								
ED093S: Sodium	7440-23-5	10	mg/kg	<10	50 mg/kg	105	81	123
ED093S: Soluble Major Cations (QCLot: 374556)								
ED093S: Calcium	7440-70-2	10	mg/kg	<10	50 mg/kg	105	85	119
ED093S: Magnesium	7439-95-4	10	mg/kg	<10	50 mg/kg	99.5	85	119
ED093S: Potassium	7440-09-7	10	mg/kg	<10	50 mg/kg	94.5	83	125
ED093S: Sodium	7440-23-5	10	mg/kg	<10	50 mg/kg	104	81	123
ED093S: Soluble Major Cations (QCLot: 374563)								
ED093S: Calcium	7440-70-2	10	mg/kg	<10	50 mg/kg	107	85	119
ED093S: Magnesium	7439-95-4	10	mg/kg	<10	50 mg/kg	99.2	85	119
ED093S: Potassium	7440-09-7	10	mg/kg	<10	50 mg/kg	94.8	83	125
ED093S: Sodium	7440-23-5	10	mg/kg	<10	50 mg/kg	106	81	123
EG005T: Total Metals by ICP-AES (QCLot: 373143)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	107	86	126
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	102	83	113
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	93.8	76	128
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	103	86	120
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	102	80	114
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	103	87	123
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	107	80	122
EG035T: Total Recoverable Mercury by FIMS (QCLot: 373	(144)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	88.0	70	105
EK057G: Nitrite as N by Discrete Analyser (QCLot: 37317	0)							1
EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	2.5 mg/kg	96.0	85	111
		0.1	ing/kg		2.0 mg/ng	00.0		
EK057G: Nitrite as N by Discrete Analyser (QCLot: 37456	1) 14797-65-0	0.1	mg/kg	<0.1	2.5 mg/kg	95.8	85	111
EK057G: Nitrite as N (Sol.)			ing/kg	<0.1	2.5 mg/kg	95.0	65	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analy	vser (QCLot: 3731	,						
EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	2.5 mg/kg	102	88	118
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analy	ser (QCLot: 3745							
EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	2.5 mg/kg	101	88	118
EK074: Fluoride Extractable Phosphorus (Bray) (QCLot: 3	72398)							
EK074: Fluoride Extractable P (Bray)		1	mg/kg	<1.0	3.5 mg/kg	96.3	88	118
EP066: Polychlorinated Biphenyls (PCB) (QCLot: 371483)								
EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	84.0	62	126
EP068A: Organochlorine Pesticides (OC) (QCLot: 371480)								
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	107	69	121
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	107	67	115
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	91.0	66	120

Page	: 10 of 13
Work Order	: ES1603869
Client	: JACOBS GROUP (AUSTRALIA) PTY LTD
Project	: M2 PARK

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP068A: Organochlorine Pesticides (OC) (QCLot: 37	1480) - continued								
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	93.4	69	115	
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	82.0	69	113	
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	106	66	116	
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	87.3	67	119	
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	108	69	115	
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	99.2	64	116	
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	81.7	65	117	
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	98.1	66	116	
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	100.0	62	124	
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	106	67	123	
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	79.5	56	120	
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	91.6	64	122	
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	77.7	68	116	
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	80.0	67	115	
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	94.4	62	118	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	82.1	65	117	
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	83.5	54	130	
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	102	63	117	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons(QCLot: 371482)								
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	92.7	73	127	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	92.7	72	124	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	93.7	77	127	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	95.4	69	123	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	98.9	70	126	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	99.1	68	116	
	205-82-3								
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	97.1	63	121	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	106	74	126	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	97.2	75	127	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	89.5	62	118	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	75.1	73	127	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	96.3	72	126	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	92.8	61	121	
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	87.4	77	125	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	95.3	75	127	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	79.2	74	128	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3	371481)								
P071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	113	75	129	
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	115	77	131	

Page	: 11 of 13
Work Order	: ES1603869
Client	: JACOBS GROUP (AUSTRALIA) PTY LTD
Project	: M2 PARK

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Recovery Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080/071: Total Petroleum Hydrocarbons (Q	CLot: 371481) - continued								
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	108	71	129	
EP080/071: Total Petroleum Hydrocarbons (Q	CLot: 371567)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	80.5	68	128	
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 Fractions (QCLo	ot: 371481)							
EP071: >C10 - C16 Fraction		50	mg/kg	<50	250 mg/kg	112	77	125	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	117	74	138	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	150 mg/kg	96.7	63	131	
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 Fractions (QCLo	ot: 371567)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	82.0	68	128	
EP080: BTEXN (QCLot: 371567)									
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	76.8	62	116	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	75.7	65	117	
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	83.7	66	118	
	106-42-3								
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	72.8	63	119	
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	79.0	68	120	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	75.8	67	121	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery I	.imits (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG005T: Total Met	als by ICP-AES (QCLot: 373143)							
ES1603863-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	101	70	130	
		EG005T: Cadmium	7440-43-9	50 mg/kg	102	70	130	
		EG005T: Chromium	7440-47-3	50 mg/kg	107	70	130	
		EG005T: Copper	7440-50-8	250 mg/kg	103	70	130	
		EG005T: Lead	7439-92-1	250 mg/kg	103	70	130	
		EG005T: Nickel	7440-02-0	50 mg/kg	104	70	130	
		EG005T: Zinc	7440-66-6	250 mg/kg	109	70	130	
G035T: Total Re	coverable Mercury by FIMS (QCLot: 373144)							
ES1603863-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	98.6	70	130	
K057G: Nitrite as	N by Discrete Analyser (QCLot: 373170)							
ES1603869-001	BH01_0.0-0.15	EK057G: Nitrite as N (Sol.)	14797-65-0	2.5 mg/kg	95.3	70	130	

Page	: 12 of 13
Work Order	: ES1603869
Client	: JACOBS GROUP (AUSTRALIA) PTY LTD
Project	: M2 PARK

Sub-Matrix: SOIL					Matrix Spike (MS) Report					
						Recovery L	imits (%).			
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
K057G: Nitrite a	s N by Discrete Analyser (QCLot: 374561)									
ES1603869-013	TP02_0.0-0.15	EK057G: Nitrite as N (Sol.)	14797-65-0	2.5 mg/kg	84.0	70	130			
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser	(QCLot: 373169)								
ES1603869-001	BH01 0.0-0.15	EK059G: Nitrite + Nitrate as N (Sol.)		2.5 mg/kg	111	70	130			
-K059G· Nitrite n	lus Nitrate as N (NOx) by Discrete Analyser									
ES1603869-013	TP02 0.0-0.15	EK059G: Nitrite + Nitrate as N (Sol.)		2.5 mg/kg	91.6	70	130			
	_	ER039G. Nitrite + Nitrate as N (Sol.)		2.0 mg/kg	01.0	10	100			
	nated Biphenyls (PCB) (QCLot: 371483)									
ES1603869-001	BH01_0.0-0.15	EP066: Total Polychlorinated biphenyls		1 mg/kg	89.0	70	130			
EP068A: Organoc	hlorine Pesticides (OC) (QCLot: 371480)									
ES1603869-001	BH01_0.0-0.15	EP068: 4.4`-DDT	50-29-3	2 mg/kg	85.7	70	130			
		EP068: Aldrin	309-00-2	0.5 mg/kg	78.1	70	130			
		EP068: Dieldrin	60-57-1	0.5 mg/kg	83.5	70	130			
	EP068: Endrin	72-20-8	2 mg/kg	97.2	70	130				
		EP068: gamma-BHC	58-89-9	0.5 mg/kg	96.0	70	130			
		EP068: Heptachlor	76-44-8	0.5 mg/kg	88.3	70	130			
P075(SIM)B: Pol	ynuclear Aromatic Hydrocarbons (QCLot: 3	71482)								
ES1603869-001	BH01_0.0-0.15	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	86.4	70	130			
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	78.3	70	130			
P080/071: Total I	Petroleum Hydrocarbons (QCLot: 371481)									
ES1603869-001	BH01_0.0-0.15	EP071: C10 - C14 Fraction		523 mg/kg	93.8	73	137			
		EP071: C15 - C28 Fraction		2319 mg/kg	104	53	131			
		EP071: C29 - C36 Fraction		1714 mg/kg	121	52	132			
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 371567)									
ES1603869-001	BH01 0.0-0.15	EP080: C6 - C9 Fraction		32.5 mg/kg	105	70	130			
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 Fra									
ES1603869-001	BH01_0.0-0.15	EP071: >C10 - C16 Fraction		860 mg/kg	92.2	73	137			
		EP071: >C16 - C34 Fraction		3223 mg/kg	117	53	131			
		EP071: >C34 - C40 Fraction		1058 mg/kg	120	52	132			
	Recoverable Hydrocarbons - NEPM 2013 Fra									
ES1603869-001	BH01 0.0-0.15	EP080: C6 - C10 Fraction	C6 C10	37.5 mg/kg	106	70	130			
		EP080. C0 - CT0 Flaction	00_010	57.5 Hig/kg	100	10	150			
EP080: BTEXN (C										
ES1603869-001	BH01_0.0-0.15	EP080: Benzene	71-43-2	2.5 mg/kg	72.0	70	130			
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	80.4	70	130			
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	86.0	70	130			
			106-42-3	0.5 ***	00.1	70	100			
		EP080: Naphthalene	91-20-3	2.5 mg/kg	80.1	70	130			
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	85.2	70	130			

Page	: 13 of 13
Work Order	ES1603869
Client	: JACOBS GROUP (AUSTRALIA) PTY LTD
Project	: M2 PARK

Sub-Matrix: SOIL	ıb-Matrix: SOIL				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EP080: BTEXN (QC	Lot: 371567) - continued									
ES1603869-001	BH01_0.0-0.15	EP080: Toluene	108-88-3	2.5 mg/kg	73.9	70	130			

ork Order	: ES1603869	Page	: 1 of 11
ent	: JACOBS GROUP (AUSTRALIA) PTY LTD	Laboratory	: Environmental Division Sydney
ntact	BLAIR CUMMINGS	Telephone	: +61-2-8784 8555
ject	: M2 PARK	Date Samples Received	: 19-Feb-2016
	:	Issue Date	: 29-Feb-2016
npler	: BLAIR CUMMINGS	No. of samples received	: 28
er number	: IA104600	No. of samples analysed	: 19

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Analysis Holding Time Compliance

Matrix: SOIL

Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA001: pH in soil using 0.01M CaCl extract							
Soil Glass Jar - Unpreserved							
BH01_0.0-0.15,	TP01_0.0-0.15,	26-Feb-2016	24-Feb-2016	1			
TP01_0.8-1.0							
Soil Glass Jar - Unpreserved							
BH03_0.0-0.15,	TP02_0.0-0.15,	26-Feb-2016	25-Feb-2016	0			
TP02_0.4-0.6,	TP02_0.8-1.0,						
TP03_0.0-0.15,	TP03_0.4-0.6,						
TP03_0.8-1.0,	TP04_0.0-0.15,						
TP04_0.4-0.6,	TP05_0.0-0.15,						
TP05_0.4-0.6,	TP05_0.8-1.0						

Outliers : Frequency of Quality Control Samples

Matrix: SOIL

Matrix: SOIL

Quality Control Sample Type	Co	unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
Cations - soluble by ICP-AES	3	32	9.38	10.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: \mathbf{x} = Holding time breach ; \mathbf{v} = Within holding time.

Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation

Page	: 3 of 11
Work Order	: ES1603869
Client	: JACOBS GROUP (AUSTRALIA) PTY LTD
Project	: M2 PARK

Matrix: SOIL					Evaluation	n: × = Holding time	e breach ; ✓ = With	in holding tim
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA001: pH in soil using 0.01M CaCl extract								
Soil Glass Jar - Unpreserved (EA001)								
BH01_0.0-0.15,	TP01_0.0-0.15,	17-Feb-2016	26-Feb-2016	24-Feb-2016	<u>*</u>	26-Feb-2016	26-Feb-2016	✓
TP01_0.8-1.0								
Soil Glass Jar - Unpreserved (EA001)								
BH03_0.0-0.15,	TP02_0.0-0.15,	18-Feb-2016	26-Feb-2016	25-Feb-2016	<u>.</u>	26-Feb-2016	26-Feb-2016	 ✓
TP02_0.4-0.6,	TP02_0.8-1.0,							
TP03_0.0-0.15,	TP03_0.4-0.6,							
TP03_0.8-1.0,	TP04_0.0-0.15,							
TP04_0.4-0.6,	TP05_0.0-0.15,							
TP05_0.4-0.6,	TP05_0.8-1.0							
EA002 : pH (Soils)								
Soil Glass Jar - Unpreserved (EA002)								
BH01_0.0-0.15,	TP01_0.0-0.15,	17-Feb-2016	24-Feb-2016	24-Feb-2016	1	24-Feb-2016	24-Feb-2016	✓
TP01_0.8-1.0								
Soil Glass Jar - Unpreserved (EA002)								
BH03_0.0-0.15,	TP02_0.0-0.15,	18-Feb-2016	25-Feb-2016	25-Feb-2016	1	25-Feb-2016	25-Feb-2016	 ✓
TP02_0.4-0.6,	TP02_0.8-1.0,							
TP03_0.0-0.15,	TP03_0.4-0.6,							
TP03_0.8-1.0,	TP04_0.0-0.15,							
TP04_0.4-0.6,	TP05_0.0-0.15,							
TP05_0.4-0.6,	TP05_0.8-1.0							
EA010: Conductivity								
Soil Glass Jar - Unpreserved (EA010)								
BH01_0.0-0.15,	TP01_0.0-0.15,	17-Feb-2016	24-Feb-2016	24-Feb-2016	1	24-Feb-2016	23-Mar-2016	 ✓
TP01_0.8-1.0								
Soil Glass Jar - Unpreserved (EA010)								
BH03_0.0-0.15,	TP02_0.0-0.15,	18-Feb-2016	25-Feb-2016	25-Feb-2016	1	25-Feb-2016	24-Mar-2016	 ✓
TP02_0.4-0.6,	TP02_0.8-1.0,							
TP03_0.0-0.15,	TP03_0.4-0.6,							
TP03_0.8-1.0,	TP04_0.0-0.15,							
TP04_0.4-0.6,	TP05_0.0-0.15,							
TP05_0.4-0.6,	TP05_0.8-1.0							
EA055: Moisture Content								
Soil Glass Jar - Unpreserved (EA055-103)								
BH01_0.0-0.15,	BH02_0.4-0.5,	17-Feb-2016				23-Feb-2016	02-Mar-2016	✓
TP01_0.4-0.6								
Soil Glass Jar - Unpreserved (EA055-103)								
BH03_0.3-0.4,	TP02_0.0-0.15,	18-Feb-2016				23-Feb-2016	03-Mar-2016	✓
TP03_0.8-1.0,	TP04_1.4-1.5,							
TP05_0.8-1.0								

Page	: 4 of 11
Work Order	: ES1603869
Client	: JACOBS GROUP (AUSTRALIA) PTY LTD
Project	: M2 PARK

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = With	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA150: Soil Classification based on Partie	cle Size							
Snap Lock Bag (EA150H)								
BH01_0.0-0.15,	TP01_0.0-0.15,	17-Feb-2016				24-Feb-2016	15-Aug-2016	✓
TP01_0.8-1.0								
Snap Lock Bag (EA150H)								
BH03_0.0-0.15,	TP02_0.0-0.15,	18-Feb-2016				24-Feb-2016	16-Aug-2016	✓
TP02_0.4-0.6,	TP02_0.8-1.0,							
TP03_0.0-0.15,	TP03_0.4-0.6,							
TP03_0.8-1.0,	TP04_0.0-0.15,							
TP04_0.4-0.6,	TP05_0.0-0.15,							
TP05_0.4-0.6,	TP05_0.8-1.0							
EA152: Soil Particle Density								
Snap Lock Bag (EA152)								
BH01_0.0-0.15,	TP01_0.0-0.15,	17-Feb-2016				24-Feb-2016	15-Aug-2016	✓
TP01_0.8-1.0								
Snap Lock Bag (EA152)								
BH03_0.0-0.15,	TP02_0.0-0.15,	18-Feb-2016				24-Feb-2016	16-Aug-2016	✓
TP02_0.4-0.6,	TP02_0.8-1.0,							
TP03_0.0-0.15,	TP03_0.4-0.6,							
TP03_0.8-1.0,	TP04_0.0-0.15,							
TP04_0.4-0.6,	TP05_0.0-0.15,							
TP05_0.4-0.6,	TP05_0.8-1.0							
EA200: AS 4964 - 2004 Identification of As	sbestos in Soils							
Snap Lock Bag: Separate bag received (EA	4200)							
BH01_0.0-0.15,	BH02_0.4-0.5,	17-Feb-2016				23-Feb-2016	15-Aug-2016	✓
TP01_0.4-0.6								
Snap Lock Bag: Separate bag received (EA								
BH03_0.3-0.4,	TP02_0.0-0.15,	18-Feb-2016				23-Feb-2016	16-Aug-2016	✓
TP03_0.8-1.0,	TP04_1.4-1.5,							
TP05_0.8-1.0								
ED006: Exchangeable Cations on Alkaline	e Soils							
Soil Glass Jar - Unpreserved (ED006)				10 14- 0010			10 14 0010	
TP01_0.0-0.15,	TP01_0.8-1.0	17-Feb-2016	26-Feb-2016	16-Mar-2016	✓	26-Feb-2016	16-Mar-2016	✓
Soil Glass Jar - Unpreserved (ED006)		19 Ech 2010	26 Eab 2016	17 Mar 2016		26 Eab 2016	17 Mar 2016	
BH03_0.0-0.15,	TP02_0.0-0.15,	18-Feb-2016	26-Feb-2016	17-Mar-2016	~	26-Feb-2016	17-Mar-2016	✓
TP02_0.4-0.6,	TP02_0.8-1.0,							
TP03_0.0-0.15,	TP03_0.8-1.0,							
TP04_0.0-0.15,	TP05_0.0-0.15,							
TP05_0.8-1.0								

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED007: Exchangeable Cations								
Soil Glass Jar - Unpreserved (ED007)					_			
BH01_0.0-0.15		17-Feb-2016	26-Feb-2016	16-Mar-2016	-	26-Feb-2016	16-Mar-2016	✓
Soil Glass Jar - Unpreserved (ED007)		18-Feb-2016	26-Feb-2016	17-Mar-2016		26-Feb-2016	17-Mar-2016	
TP03_0.4-0.6, TP05_0.4-0.6	TP04_0.4-0.6,	10-Feb-2010	20-Pep-2010	17-Wai-2010	~	20-Feb-2010	17-101-2010	-
ED040: Sulfur as SO4 2-								
Soil Glass Jar - Unpreserved (ED040T)								
BH01_0.0-0.15,	TP01_0.8-1.0	17-Feb-2016	23-Feb-2016	24-Feb-2016	1	24-Feb-2016	22-Mar-2016	✓
Soil Glass Jar - Unpreserved (ED040T)								
TP02_0.0-0.15,	TP03_0.4-0.6,	18-Feb-2016	23-Feb-2016	25-Feb-2016	1	24-Feb-2016	22-Mar-2016	✓
TP04_0.0-0.15								
ED093S: Soluble Major Cations								
Soil Glass Jar - Unpreserved (ED093S)								
BH01_0.0-0.15,	TP01_0.0-0.15,	17-Feb-2016	24-Feb-2016	15-Aug-2016	1	24-Feb-2016	15-Aug-2016	✓
TP01_0.8-1.0								
Soil Glass Jar - Unpreserved (ED093S)		18-Feb-2016	25-Feb-2016	16-Aug-2016		25-Feb-2016	16-Aug-2016	
BH03_0.0-0.15,	TP02_0.0-0.15,	18-Feb-2016	25-Feb-2016	10-Aug-2010	-	25-Feb-2016	10-Aug-2010	✓
TP02_0.4-0.6,	TP02_0.8-1.0,							
TP03_0.0-0.15, TP03_0.8-1.0,	TP03_0.4-0.6, TP04_0.0-0.15,							
TP05_0.6-1.0, TP04_0.4-0.6,	TP04_0.0-0.15, TP05_0.0-0.15,							
TP04_0.4-0.6, TP05_0.4-0.6,	TP05_0.0-0.15, TP05_0.8-1.0							
	1P05_0.8-1.0							
EG005T: Total Metals by ICP-AES								1
Soil Glass Jar - Unpreserved (EG005T)	BH02 0.4-0.5,	17-Feb-2016	24-Feb-2016	15-Aug-2016	1	24-Feb-2016	15-Aug-2016	1
BH01_0.0-0.15, TP01 0.4-0.6	вног_0.4-0.5,	17-1 65-2010	24-1 60-2010	10-Aug-2010	~	24-1 65-2010	10-Aug-2010	•
Soil Glass Jar - Unpreserved (EG005T)								
BH03_0.3-0.4,	TP02 0.0-0.15,	18-Feb-2016	24-Feb-2016	16-Aug-2016	1	24-Feb-2016	16-Aug-2016	✓
TP03 0.8-1.0,	TP04 1.4-1.5,			_	_		_	
TP05_0.8-1.0	·····,							
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T)								
BH01_0.0-0.15,	BH02_0.4-0.5,	17-Feb-2016	24-Feb-2016	16-Mar-2016	1	26-Feb-2016	16-Mar-2016	✓
TP01_0.4-0.6								
Soil Glass Jar - Unpreserved (EG035T)				17 Mar 0010			47 Mar 0040	
BH03_0.3-0.4,	TP02_0.0-0.15,	18-Feb-2016	24-Feb-2016	17-Mar-2016	-	26-Feb-2016	17-Mar-2016	✓
TP03_0.8-1.0,	TP04_1.4-1.5,							
TP05_0.8-1.0								

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = With	in holding tim
Method		Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK057G: Nitrite as N by Discrete Analyser								
Soil Glass Jar - Unpreserved (EK057G) BH01_0.0-0.15,	TP01 0.8-1.0	17-Feb-2016	24-Feb-2016	15-Aug-2016	1	24-Feb-2016	15-Aug-2016	1
Soil Glass Jar - Unpreserved (EK057G)	1F01_0.8-1.0	17-1 65-2010	24-1 60-2010	13-Aug-2010	✓	24-1 65-2010	13-Aug-2010	√
TP02 0.0-0.15,	TP03 0.4-0.6,	18-Feb-2016	25-Feb-2016	16-Aug-2016	1	25-Feb-2016	16-Aug-2016	1
TP04_0.0-0.15	_ /							
EK059G: Nitrite plus Nitrate as N (NOx) by Dis	screte Analyser							
Soil Glass Jar - Unpreserved (EK059G)				45 4			45 4	
BH01_0.0-0.15,	TP01_0.8-1.0	17-Feb-2016	24-Feb-2016	15-Aug-2016		24-Feb-2016	15-Aug-2016	✓
Soil Glass Jar - Unpreserved (EK059G) TP02_0.0-0.15,	TP03_0.4-0.6,	18-Feb-2016	25-Feb-2016	16-Aug-2016	1	25-Feb-2016	16-Aug-2016	1
TP04 0.0-0.15	1103_0.4-0.0,	10-1 05-2010	20-1 05-2010	10 / lag 2010	×	20-1 05-2010	107.09.2010	•
EK074: Fluoride Extractable Phosphorus (Bray)						1	
Soil Glass Jar - Unpreserved (EK074)	,							
BH01_0.0-0.15,	TP01_0.8-1.0	17-Feb-2016	26-Feb-2016	15-Aug-2016	-	26-Feb-2016	15-Aug-2016	✓
Soil Glass Jar - Unpreserved (EK074)			00 Est 0040	10 4.00 0040	,	00 Est 0040	10 4.00 0010	
TP02_0.0-0.15,	TP03_0.4-0.6,	18-Feb-2016	26-Feb-2016	16-Aug-2016	~	26-Feb-2016	16-Aug-2016	✓
TP04_0.0-0.15								
EP066: Polychlorinated Biphenyls (PCB)			1			1		
Soil Glass Jar - Unpreserved (EP066) BH01 0.0-0.15,	BH02 0.4-0.5,	17-Feb-2016	23-Feb-2016	02-Mar-2016	1	24-Feb-2016	03-Apr-2016	1
TP01 0.4-0.6	B1102_0.4-0.3,	11100 2010	20105 2010		×		0074012010	v
Soil Glass Jar - Unpreserved (EP066)								
BH03_0.3-0.4,	TP02_0.0-0.15,	18-Feb-2016	23-Feb-2016	03-Mar-2016	~	24-Feb-2016	03-Apr-2016	✓
TP03_0.8-1.0,	TP04_1.4-1.5,							
TP05_0.8-1.0								
EP068A: Organochlorine Pesticides (OC)								
Soil Glass Jar - Unpreserved (EP068)					_			
BH01_0.0-0.15,	BH02_0.4-0.5,	17-Feb-2016	23-Feb-2016	02-Mar-2016	-	24-Feb-2016	03-Apr-2016	✓
TP01_0.4-0.6								
Soil Glass Jar - Unpreserved (EP068) BH03_0.3-0.4,	TP02 0.0-0.15,	18-Feb-2016	23-Feb-2016	03-Mar-2016	1	24-Feb-2016	03-Apr-2016	1
TP03 0.8-1.0,	TP04_1.4-1.5,		20105 2010		· ·		007.p. 2010	v
TP05 0.8-1.0	11 04_114 110,							
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP071)								
BH01_0.0-0.15,	BH02_0.4-0.5,	17-Feb-2016	23-Feb-2016	02-Mar-2016	1	24-Feb-2016	03-Apr-2016	✓
TP01_0.4-0.6	_ `							
Soil Glass Jar - Unpreserved (EP071)								
BH03_0.3-0.4,	TP02_0.0-0.15,	18-Feb-2016	23-Feb-2016	03-Mar-2016	1	24-Feb-2016	03-Apr-2016	✓
TP03_0.8-1.0,	TP04_1.4-1.5,							
TP05_0.8-1.0								

Page	: 7 of 11
Work Order	: ES1603869
Client	: JACOBS GROUP (AUSTRALIA) PTY LTD
Project	: M2 PARK

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method Container / Client Sample ID(s)		Sample Date	Extraction / Preparation			Analysis		
			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075(SIM)B: Polynuclear Aromatic Hydr	rocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM))								
BH01_0.0-0.15,	BH02_0.4-0.5,	17-Feb-2016	23-Feb-2016	02-Mar-2016	1	23-Feb-2016	03-Apr-2016	✓
TP01_0.4-0.6								
Soil Glass Jar - Unpreserved (EP075(SIM))								
BH03_0.3-0.4,	TP02_0.0-0.15,	18-Feb-2016	23-Feb-2016	03-Mar-2016	1	23-Feb-2016	03-Apr-2016	✓
TP03_0.8-1.0,	TP04_1.4-1.5,							
TP05_0.8-1.0								
EP080/071: Total Petroleum Hydrocarbor	IS							
Soil Glass Jar - Unpreserved (EP080)								
BH01_0.0-0.15,	BH02_0.4-0.5,	17-Feb-2016	23-Feb-2016	02-Mar-2016	1	25-Feb-2016	02-Mar-2016	✓
TP01_0.4-0.6								
Soil Glass Jar - Unpreserved (EP080)								
BH03_0.3-0.4,	TP02_0.0-0.15,	18-Feb-2016	23-Feb-2016	03-Mar-2016	1	25-Feb-2016	03-Mar-2016	✓
TP03_0.8-1.0,	TP04_1.4-1.5,							
TP05_0.8-1.0								

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		Count		Rate (%)			Quality Control Specification	
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation		
aboratory Duplicates (DUP)								
Cations - soluble by ICP-AES	ED093S	3	32	9.38	10.00	x	NEPM 2013 B3 & ALS QC Standard	
Electrical Conductivity (1:5)	EA010	3	17	17.65	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Exchangeable Cations	ED007	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
exchangeable Cations on Alkaline Soils	ED006	2	11	18.18	10.00	1	NEPM 2013 B3 & ALS QC Standard	
luoride extractable Phosphorus (Bray)	EK074	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Noisture Content	EA055-103	4	24	16.67	10.00	~	NEPM 2013 B3 & ALS QC Standard	
Vitrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	2	5	40.00	10.00	1	NEPM 2013 B3 & ALS QC Standard	
nalyser								
litrite as N - Soluble by Discrete Analyser	EK057G	2	5	40.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
AH/Phenols (SIM)	EP075(SIM)	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Pesticides by GCMS	EP068	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
H (1:5)	EA002	5	34	14.71	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
H in soil using a 0.01M CaCl2 extract	EA001	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
olychlorinated Biphenyls (PCB)	EP066	1	9	11.11	10.00	~	NEPM 2013 B3 & ALS QC Standard	
ulfate as SO4 2- Total	ED040T	2	14	14.29	10.00	~	NEPM 2013 B3 & ALS QC Standard	
otal Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
otal Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
RH - Semivolatile Fraction	EP071	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
RH Volatiles/BTEX	EP080	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
aboratory Control Samples (LCS)								
Cations - soluble by ICP-AES	ED093S	3	32	9.38	5.00	1	NEPM 2013 B3 & ALS QC Standard	
lectrical Conductivity (1:5)	EA010	2	17	11.76	5.00	1	NEPM 2013 B3 & ALS QC Standard	
xchangeable Cations	ED007	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Exchangeable Cations on Alkaline Soils	ED006	1	11	9.09	5.00	1	NEPM 2013 B3 & ALS QC Standard	
luoride extractable Phosphorus (Bray)	EK074	1	6	16.67	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard	
litrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	2	5	40.00	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard	
Analyser						-		
litrite as N - Soluble by Discrete Analyser	EK057G	2	5	40.00	5.00	~	NEPM 2013 B3 & ALS QC Standard	
AH/Phenols (SIM)	EP075(SIM)	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
esticides by GCMS	EP068	1	9	11.11	5.00	~	NEPM 2013 B3 & ALS QC Standard	
olychlorinated Biphenyls (PCB)	EP066	1	9	11.11	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard	
otal Mercury by FIMS	EG035T	1	20	5.00	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard	
otal Metals by ICP-AES	EG005T	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard	
RH - Semivolatile Fraction	EP071	1	12	8.33	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard	
RH Volatiles/BTEX	EP080	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard	

Page: 9 of 11Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Cations - soluble by ICP-AES	ED093S	3	32	9.38	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	2	17	11.76	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Exchangeable Cations	ED007	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Exchangeable Cations on Alkaline Soils	ED006	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride extractable Phosphorus (Bray)	EK074	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	2	5	40.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Analyser							
Nitrite as N - Soluble by Discrete Analyser	EK057G	2	5	40.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate as SO4 2- Total	ED040T	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Nitrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	2	5	40.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Analyser							
Nitrite as N - Soluble by Discrete Analyser	EK057G	2	5	40.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	9	11.11	5.00	~	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH in soil using a 0.01M CaCl2 extract	EA001	SOIL	In house: Referenced to Rayment and Higginson 4B1 (mod.) 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM (2013) Schedule B(3) (Method 103)
рН (1:5)	EA002	SOIL	In house: Referenced to APHA 4500H+. pH is determined on soil samples after a 1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3) (Method 103)
Electrical Conductivity (1:5)	EA010	SOIL	In house: Referenced to APHA 2510. Conductivity is determined on soil samples using a 1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3) (Method 104)
Moisture Content	EA055-103	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Particle Size Analysis by Hydrometer	EA150H	SOIL	Particle Size Analysis by Hydrometer according to AS1289.3.6.3 - 2003
Soil Particle Density	* EA152	SOIL	Soil Particle Density by AS 1289.3.5.1-2006 : Methods of testing soils for engineering purposes - Soil classification tests - Determination of the soil particle density of a soil - Standard method
Asbestos Identification in Soils	EA200	SOIL	AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples Analysis by Polarised Light Microscopy including dispersion staining
Exchangeable Cations on Alkaline Soils	ED006	SOIL	In house: Referenced to Rayment & Lyons (2011) Method 15C1. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with alcoholic ammonium chloride at pH 8.5. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil.
Exchangeable Cations	ED007	SOIL	In house: Referenced to Rayment & Lyons (2011) Method 15A1. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 301)
Sulfate as SO4 2- Total	ED040T	SOIL	In house: Total Sulfate is determined off a HCl digestion by ICPAES as S, and reported as SO4
Cations - soluble by ICP-AES	ED093S	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010 (ICPAES) Water extracts of the soil are analyzed for major cations by ICPAES. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N - Soluble by Discrete Analyser	EK057G	SOIL	In house: Referenced to APHA 4500-NO3- B. Nitrite in a water extract is determined by direct colourimetry by Discrete Analyser.

Page: 11 of 11Work Order: ES1603869Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: M2 PARK

Analytical Methods	Method	Matrix	Method Descriptions
Nitrate as N - Soluble by Discrete Analyser	EK058G	SOIL	In house: Referenced to APHA 4500-NO3- F. Nitrate in the 1:5 soil:water extract is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrite and Nitrate as N (NOx)- Soluble by Discrete Analyser	EK059G	SOIL	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) in a water extract is determined by Chemical Reduction, and direct colourimetry by Discrete Analyser.
Fluoride extractable Phosphorus (Bray)	EK074	SOIL	In house: Referenced to Rayment & Higginson (1992) Method 9E1. Phosphorus is extracted from the soil using NH4F and determined by discrete analyzer.
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve.
Preparation Methods	Method	Matrix	Method Descriptions
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	ES1603869		
Client	: JACOBS GROUP (AUSTRALIA) PTY LTD	Laboratory : Envir	onmental Division Sydney
Contact	: BLAIR CUMMINGS	Contact :	
Address	100 CHRISTIE STREET P O BOX 164 ST LEONARDS NSW, AUSTRALIA 2065		289 Woodpark Road Smithfield Australia 2164
E-mail	: blair.cummings@jacobs.com	E-mail	
Telephone	: +61 02 9928 2100	Telephone : +61-2	2-8784 8555
Facsimile	: +61 02 9928 2272	Facsimile : +61-2	2-8784 8500
Project	: M2 PARK	Page : 1 of 3	
Order number	: IA104600	Quote number : ES20	15SINKNI0472 (EN/003/15)
C-O-C number	: 233253-233255	QC Level : NEP	A 2013 B3 & ALS QC Standard
Site	:		
Sampler	: BLAIR CUMMINGS		
Dates			
Date Samples Receive	d : 19-Feb-2016 3:15 AM	Issue Date	: 22-Feb-2016
Client Requested Due Date	: 26-Feb-2016	Scheduled Reporting Date	26-Feb-2016
Delivery Details	5		
Mode of Delivery	: Undefined	Security Seal	: Intact.
No. of coolers/boxes	: 1	Temperature	: 0.9'C - Ice present
Receipt Detail	:	No. of samples received / analy	/sed : 28 / 19

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Asbestos AND PSD analysis will be conducted by ALS Newcastle.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

: Default

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

	uded in the package.	content and preparation	- EA010 (solids): Electrical Conductiv	SOIL - EA200 Asbestos Identification in Soils -	SOIL - ED008 Def Exchangeable Cations with pre-treatment [SOIL - ED093S Cations - Soluble	SOIL - EK074 Fluoride Extractable P (Bray)	°-11 8	SOIL - S-26 8 metals/TRH/BTEXN/PAH
Laboratory sample ID	Client sampling date / time	Client sample ID	SOIL - F (1:5)	SOIL - F Asbestc	SOIL - Exchan	SOIL - E Cations	SOIL - EK074 Fluoride Extra	SOIL - S-11 OC/PCB	SOIL - S-26 8 metals/TR
ES1603869-001	[17-Feb-2016]	BH01_0.0-0.15	✓	✓	1	1	1	1	✓
ES1603869-006	[17-Feb-2016]	BH02_0.4-0.5		✓				✓	✓
ES1603869-007	[18-Feb-2016]	BH03_0.0-0.15	✓		✓	✓			
ES1603869-008	[18-Feb-2016]	BH03_0.3-0.4		✓				1	✓
ES1603869-009	[17-Feb-2016]	TP01_0.0-0.15	✓		✓	1			
ES1603869-010	[17-Feb-2016]	TP01_0.4-0.6		✓				✓	✓
ES1603869-011	[17-Feb-2016]	TP01_0.8-1.0	✓		✓	✓	✓		
ES1603869-013	[18-Feb-2016]	TP02_0.0-0.15	✓	✓	✓	✓	✓	✓	✓
ES1603869-014	[18-Feb-2016]	TP02_0.4-0.6	✓		✓	✓			
ES1603869-015	[18-Feb-2016]	TP02_0.8-1.0	✓		✓	✓			
ES1603869-017	[18-Feb-2016]	TP03_0.0-0.15	✓		✓	✓			
ES1603869-018	[18-Feb-2016]	TP03_0.4-0.6	✓		✓	✓	✓		
ES1603869-019	[18-Feb-2016]	TP03_0.8-1.0	✓	✓	✓	✓		✓	✓
ES1603869-021	[18-Feb-2016]	TP04_0.0-0.15	1		✓	✓	✓		
ES1603869-022	[18-Feb-2016]	TP04_0.4-0.6	✓		✓	✓			
ES1603869-024	[18-Feb-2016]	TP04_1.4-1.5		✓				✓	✓
ES1603869-025	[18-Feb-2016]	TP05_0.0-0.15	✓		1	1			
ES1603869-026	[18-Feb-2016]	TP05_0.4-0.6	1		✓	1			
ES1603869-027	[18-Feb-2016]	TP05_0.8-1.0	✓	1	1	1		✓	1
Matrix: SOIL Laboratory sample	<i>Client sampling</i>	Client sample ID	(On Hold) SOIL No analysis requested	SOIL - EA001 pH (CaCl)	SOIL - EA002 pH (1:5)	SOIL - EA055-103 Moisture Content	SOIL - EA150H/EA152 Particle Sizing with Hydrometer + Soil Particle	SOIL - ED040T Sulfate Total	EK058G (solids) tte as N - soluble by Discrete Analyser
ID	date / time		No a	SOII PH (SOIL - E pH (1:5)	SOII Mois	SOII	Solf	SOIL - I Nitrate
ES1603869-001	[17-Feb-2016]	BH01_0.0-0.15		✓	✓	✓	✓	✓	✓
E31003009-001			1						
ES1603869-001	[17-Feb-2016]	BH01_0.2-0.3	_		_				
	[17-Feb-2016] [17-Feb-2016]	BH01_0.2-0.3 BH01_0.4-0.5	1						
ES1603869-002			√ √						

Issue Date	: 22-Feb-2016
Page	: 3 of 3
Work Order	: ES1603869 A
Client	

ES1603869 Amendment 0 JACOBS GROUP (AUSTRALIA) PTY LTD

			(On Hold) SOIL	ro anarysis requested SOIL - EA001 pH (CaCl)	SOIL - EA002 pH (1:5)	SOIL - EA055-103 Moisture Content	SOIL - EA150H/EA152 Particle Sizing with Hydrometer + Soil Particle	SOIL - ED040T Sulfate Total	SOIL - EK058G (solids) Nitrate as N - soluble by Discrete Analyser
ES1603869-006	[17-Feb-2016]	BH02_0.4-0.5				1			
ES1603869-007	[18-Feb-2016]	BH03_0.0-0.15		✓	1	1	✓		
ES1603869-008	[18-Feb-2016]	BH03_0.3-0.4				✓			
ES1603869-009	[17-Feb-2016]	TP01_0.0-0.15		✓	✓	✓	✓		
ES1603869-010	[17-Feb-2016]	TP01_0.4-0.6				1			
ES1603869-011	[17-Feb-2016]	TP01_0.8-1.0		1	✓	✓	1	1	✓
ES1603869-012	[17-Feb-2016]	TP01_1.4-1.5	✓						
ES1603869-013	[18-Feb-2016]	TP02_0.0-0.15		 ✓ 	✓	✓	✓	✓	✓
ES1603869-014	[18-Feb-2016]	TP02_0.4-0.6		✓	✓	✓	✓		
ES1603869-015	[18-Feb-2016]	TP02_0.8-1.0		 ✓ 	✓	✓	✓		
ES1603869-016	[18-Feb-2016]	TP02_1.4-1.5	√						
ES1603869-017	[18-Feb-2016]	TP03_0.0-0.15		 ✓ 	✓	✓	✓		
ES1603869-018	[18-Feb-2016]	TP03_0.4-0.6		 ✓ 	✓	✓	✓	✓	✓
ES1603869-019	[18-Feb-2016]	TP03_0.8-1.0		✓	✓	✓	✓		
ES1603869-020	[18-Feb-2016]	TP03_1.4-1.5	√						
ES1603869-021	[18-Feb-2016]	TP04_0.0-0.15		✓	✓	✓	✓	✓	✓
ES1603869-022	[18-Feb-2016]	TP04_0.4-0.6		1	1	1	1		
ES1603869-023	[18-Feb-2016]	TP04_0.8-1.0	1						
ES1603869-024	[18-Feb-2016]	TP04_1.4-1.5				1			
ES1603869-025	[18-Feb-2016]	TP05_0.0-0.15		1	✓	1	✓		
ES1603869-026	[18-Feb-2016]	TP05_0.4-0.6		1	✓	1	✓		
ES1603869-027	[18-Feb-2016]	TP05_0.8-1.0		1	✓	1	✓		
ES1603869-028	[18-Feb-2016]	TP05_1.4-1.5	1						

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE (Brisbane)		
- A4 - AU Tax Invoice (INV)	Email	AU-AP@Jacobs.com
BLAIR CUMMINGS		
 *AU Certificate of Analysis - NATA (COA) 	Email	blair.cummings@jacobs.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	blair.cummings@jacobs.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	blair.cummings@jacobs.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	blair.cummings@jacobs.com
- A4 - AU Tax Invoice (INV)	Email	blair.cummings@jacobs.com
 Chain of Custody (CoC) (COC) 	Email	blair.cummings@jacobs.com
- EDI Format - ESDAT (ESDAT)	Email	blair.cummings@jacobs.com
- EDI Format - XTab (XTAB)	Email	blair.cummings@jacobs.com

· · ·	E E EMERALD	MUDGEE	PERTH	SYDNEY TOWNSVILLE	. 1
TURNAROUND REQUIREMENTS: (Standard TAT may be longer for	Standard TAT (LI	date): t TAT (I ist due date):		OR LABORATORY USE C	NLY (Circle)
some tests e.g. Ultra Trace Organics)	Non standard or	t IAI (List due date):		Sustody Seal Intact?	Yes No N/A
ALS QUOTE NO .:		COC SEQUENCE NUMBE	(Circle)		Yes No NA
	coc:	→23	5 6 7	Random Sample Temperatu	
EN CONTACT PH:	OF	- (⊵	5 6 7	Other comment:	
SAMPLER MOBILE: O408 427 609		RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:	RECEIVED BY:
		B. Cummingo	Nanh Arg		
			DATE/TIME:	DATE/TIME:	DATE/TIME:
		19/02/16 100D	1212		
COMMENTS/ SPECIAL HANDLING/STORAGE OR DISPOSAL:			(15) (15)		
CONTAINER INFORMATION		, specify Total (unfiltered bottle r	e Codes must be listed to attra equired) or dissolved (field filt		Additional Information
	TAINERS - 11 - 26 Listos	02 01 010	008 0H- 52	40T	Comments on likely contaminant levels, dilutions, or samples
	5- 5- Asba	EAO EAO EAC	ED EAIS EAI	Eno	requiring specific QC analysis etc.
	XXX	× × ×	* * *	メ ス	
Environmental Division					
Sydney Work Order Beference	1 Jar NYWWWWWWWW		Sale	pression / we	Las / Spit WO
			1.30/	And ysis-	-Pro-
			63.(C	nisel By / D	TO Charte
	メメ			quished By	/ Date: 17225
	MAN ARMAN	x x x x x	× ×	/ Courier:	Mouriet
	*			10:	
Telephone : + 61-2-8794 8555	۲		× ×	IL DY FOIL	HILL LOL VIIOTRA
	2	*	*		
7/02/16 5					
ΤΟΤΑL	1 UHIC		-		
$\frac{\partial \Omega}{\partial x} = \frac{\partial \Omega}{\partial x}$	ALS Laboratory: Please tick → ITURNAROUND REQUIREMENT ITURNAROUND REQUIREMENT Same tests e.g. Ultra Trace Organistics Some tests e.g. Ultra Trace Organistics CONTACT PH: CONTACT PH: Oqtog q27 (0 default): teday: Blaxit, Cummings.c ad): CONTAINER INFC container informental Divisic Sydney Work Order Reference ENVIRONMENTAL DIVISIC Sydney Work Order Reference ESTIGO386 Traephone : + 61:2-8734 8655	ALS Laboratory: DRISBARE Please tick → CHURNAROUND REQUIREMENTS: CHURNHLA TURNAROUND REQUIREMENTS: CHURNHLA CONTACT PH: CONTACT PH: CONTACT PH: CONTACT PH: CONTACT PH: CONTACT PH: CONTACT PH: CONTACT PH: CONTAINER INFORMATION default): Image: Contrainer information Image: Contrainer information default): CONTAINER INFORMATION Image: Contrainer information ad): Contrainer information Image: Contrainer information Sydney Crefer to codes below) TOTAINERS Sydney Sydney Containers Sydney Sydney Image: Sydney Work Order Reference Image: Sydney Sydney Image: Sydney Sydney Image: Sydney Image: Sydney Image: Sydney Sydney Sydney Sydney Image: Sydney Sydney Image: Sydney Image: Sydney Image: Sydney Image: Sydney Image: Sydney Image: Sydney Image: Sydney Image: Sydney Ima	ALS Laboratory: DRISBARE Please tick → CONTACT PH: CONTACT PH: CONTACT PH: CONTACT PH: CONTACT PH: CONTACT PH: CONTAINER INFORMATION default): Image: Container to codes below) Image: Container to codes below) Image: Container to codes below) S Image: Container to codes below) Image: Container to codes below Image: Container to conto container to contocoto container to container to container to	ALS Laboratory Instance Instance	ALS Learning: Construction Result Image: Transaccional statution Result Image: Transaccional statution Result Image: Transaccional statution Result Image: Transaccional statution Result Result

>			29				DARWIN	RWIN		CKAY			۵	NEWCASTLE		_	ROMA	
							📕 emerald	ERALD	MELBOURNE	-BOURNE			۵	NOWRA			SYDNEY	
	S) Environmental		plea	please tick \rightarrow CHINCHILLA			Ē	GLADSTONE	MUDGEE	DGEE			۵	PERTH		_	TOWNSVILLE	
CLIENT:	Jacob			TURNAROUND REQUIREMENTS:			ndard	Standard TAT (List due date):	late):						T	ORLA	BORATORY	FOR LABORATORY USE ONLY (Circle)
OFFICE:	St Leonardu		some	some tests e.g. Ultra Trace Organics)	Г		stan	Non Standard or urgent	gent IAI (List due date):	date):					1 0	ustody	Custody Seal Intact?	Yes No N/A
PROJECT	M2		ALS	ALS QUOTE NO .:					COC SEQUENCE NUMBER	NCE	NUMB		(Circle)	Ĵ		esent	present upon receipt?	pricks ? Yes No N/A
PURCHA	BER:	TAIO4600						COC:	→	\odot	ω	4	თ	67	ਸ	andom	Sample Ter	erature on Receipt:
PROJECT	PROJECT MANAGER: MIGNY - EI	- Ellen Feaney		CONTACT PH:				OF:	<u> </u>	Ν	\odot	4	თ	67	0	ther co	Other comment:	
SAMPLER:	Blair Cum	SAMPLER MOBILE:		607 LZH 8040					RELINQUISHED BY:	HEDE	.≍	REO	ËVE	RECEIVED BY:		RELIN	RELINQUISHED BY:	Y: RECEIVED BY:
COC ema	COC emailed to ALS? (YES / NO)	EDD FORMAT (or default)	defau	lt):					B. ammingo		4		Nert	sh ne	~~			
Email Rep	Email Reports to (will default to PM if no other addresses are listed):	ther addresses are list	ted):	Blani. Cummings @ jaco	jacols. WM	53			DATE/TIME:	•		, DA	DATE/TIME:	<u>,</u>		DATE/TIME:	TIME:	DATE/TIME:
Email Inv	Email Invoice to (will default to PM if no other addresses are listed):	her addresses are liste	ed):						14/02/16		000		,	515				
COMMEN	COMMENTS/ SPECIAL HANDLING/STORAGE OR DISPOSAL:	AGE OR DISPOSAL:																
ALS	SAMPLE DETAILS MATRIX - SOLID (S), WATER (W)	ETAILS), WATER (W)		CONTAINER INFORMATION		AN/ Whe	ALYSI re Met	ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unfiltered bottle required) or dissolved (field filtered bottle required).	including SU specify Total (u	ITES	(NB. Su d bottle	iite Coo requir	les mu ed) or o	ist be listed t dissolved (fie	o attrac Id filter	t suite ed bottl	price) le required).	Additional Information
LAB ID	SAMPLE ID	DATE/ TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL CONTAINERS	5-11	5-26	Asbestos Algeneul Presence EA200	EAOOZ	EADOI	EAOIO	E D0935	ED 008	EAISOH - EAISZ	EK 058	EK 074	edo40t	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
5	102. 0.0- 0.15	18/02/16	S		2 DAC	×	×	x	*	X	×	$\boldsymbol{\lambda}$	×	×,	x	x	x	
ĩ	TP02-0.4-0.6	-	_		-				×	×	×	×	×	X			-	
رر	JP02 _ 0.8 - 1.0				4				×	X	×	$\boldsymbol{\lambda}_{i}$	×	×				
:	TP02-1-4-1-5				ight GAR													
C	TP03_0.0-0.15				2 BAG				بلر *	$\boldsymbol{\lambda}$	X	X	ン	×				
6	TP03_0.4-0.6								*	X	×	X	x	×	メ	$\boldsymbol{\lambda}$	×	
4	TPOZ 0.8 - 1.0				4	X	×	×	*	7	×	$\frac{\lambda}{\lambda}$	メ	X				
б	1103-1.4-1.5				1 JAR			2 11 11	à									
2	TP04- 0.0-0.15	-			2 JAR	5			×	$\boldsymbol{\lambda}$	\mathbf{x}	×	ト	×	イ	ナ	×	
<i>v</i> ı	1Pot- 0.4-0.6								×	X	X	X	$\boldsymbol{\lambda}$	×				
4	TP04- 0.8-1.0	4	4		•									2				
24	TP04- 1.4- 1.5	18/02/16	5		1 BAG	×	x	×										
				TOTAL														
Water Cont AP - Airfreigt LI = Lugols I	ainer Codes: P = Unpreserved Plastic; N = it: Unpreserved Plastic; VS = VOA Vial Sulfuri odine Preserved; STT = Sterile Sodium Thios	Nitric Preserved Plastic; ORC c Preserved; AV = Airfreight Ur ulfate Preserved; Z = Zinc Ace) = Nitric npreserv state Pre	Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; AlP - Afrieight Unpreserved Plastic; VS = VOA Val Sulfuric Preserved; Al = Afrieight Unpreserved Val SG = Sulfuric Preserved Amber Glass; H = HCl preserved Plastic; HS = HCl preserved; Al = AFrieight Unpreserved; Val SG = Sulfuric Preserved; Amber Glass; H = HCl preserved Plastic; HS = HCl preserved; Al = AFrieight Unpreserved; Val SG = Sulfuric Preserved; Amber Glass; H = HCl preserved Plastic; HS = HCl preserved; Z = Zinc Acetate Preserved Bottle; E = Ed TA Preserved Bottles; ST = Sterile Bottle Sodium Thiosulfate Preserved; Z = Zinc Acetate Preserved Bottle; E = Ed TA Preserved Bottles; ST = Sterile Bottle Sodium Thiosulfate Preserved; Z = Zinc Acetate Preserved Bottle; E = Ed TA Preserved Bottles; ST = Sterile Bottle Sodium Thiosulfate Preserved; Z = Zinc Acetate Preserved Bottle; E = Ed TA Preserved Bottles; ST = Sterile Bottle Sodium Thiosulfate Preserved; Z = Zinc Acetate Preserved Bottle; E = Ed TA Preserved Bottles; ST = Sterile Bottle Sodium Thiosulfate Preserved; Z = Zinc Acetate Preserved Bottle; E = Ed TA Preserved Bottles; ST = Sterile Bottle Sodium Thiosulfate Preserved; Z = Zinc Acetate Preserved Bottle; E = Ed TA Preserved Bottles; ST = Sterile Bottle Sodium Thiosulfate Preserved; Z = Zinc Acetate Preserved Bottle; E = Ed TA Preserved Bottles; ST = Sterile Bottle Sodium Thiosulfate Preserved; Z = Zinc Acetate Preserved Bottle; E = Ed TA Preserved Bottles; ST = Sterile Bottle Sodium Thiosulfate Preserved; Z = Zinc Acetate Preserved Bottle; E = Ed TA Preserved Bottles; ST = Sterile Bottle Sodium Thiosulfate Preserved; Z = Zinc Acetate Preserved; E = Ed; S = Sterile; E = Sterile; S = Sterile	S = Sod preserved Bottle Sc	odium Hydroxide Prese ed Plastic; HS = HCl pr Soil Container Codes:	roxide P HS = H Iner Co	reserved Plastic; AC Cl preserved Specia des: ASS = Plastic	stic; AG = Amber Glass Unpreserved; Speciation bottle; SP = Sulfuric Preserved Plastic; Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag	npresen ulfuric Pi late Soils	ed; eserved ; B = Un	Plastic; preserve	d Bag.					233254

				DARWIN	МАСКАЧ	AY		NEWCASTLE	ICASTLE			ROMA	WOLLONGONG
				EMERALD	MELBOURNE	JURNE		NOWRA	IRA		•	SYDNEY	
(ALS) Environmental		please tick \rightarrow CHINCHILLA		GLADSTONE	MUDGEE	Ħ			Ŧ		· • •	J TOWNSVILLE	
CLIENT: Jacobs		TURNAROUND REQUIREMENTS:	Sta	Standard TAT (List due date):	date):					FO	RLAI	BORATORY	FOR LABORATORY USE ONLY (Circle)
OFFICE: St Leonardy	0	some tests e.g. Ultra Trace Organics)		n standard or urgen	t IAI (List due d	ate):				Cu	stody	Custody Seal Intact?	Yes No N/A
PROJECT: M2 - Park	-	ALS QUOTE NO .:			COC SEQUENCE NUMBER	CE NUI	MBER	(Circle)		Fre	e ice , sent u	Free ice / frozen ice bricks present upon receipt?	icks [/] Yes No
PURCHASE ORDER NUMBER: TA404600				COC:		∾ ©	-		7	Rai	ndom	Sample Terr	perature on Rece
PROJECT MANAGER: Many - Ellen Ferney	eeney	CONTACT PH:		OF		~	4			Q	ler coi	Other comment:	
	SAMPLER MOBILE:	P07 L24 2040			RELINQUISHED BY:	ED BY:		RECEIVED BY:	۶۲:	R	ELN	RELINQUISHED BY:	Y: RECEIVED BY:
COC emailed to ALS? (YES / 🔞) CDD	EDD FORMAT (or default):				B. CLIMMINN	Mint		Sal	æ	-			
Email Reports to (will default to PM if no other addresses are listed):	dresses are liste	d): Blair Cumming & jacobs.com	. Com		DATE/TIME:	0		DATE/TIME:		p	DATE/TIME:	IME:	DATE/TIME:
Email Invoice to (will default to PM if no other addresses are listed):	resses are listec				10:01 91/20/PI	0	ç	5151	<u>ب</u>				
COMMENTS/ SPECIAL HANDLING/STORAGE OR DISPOSAL:	R DISPOSAL:									-			
ALS SAMPLE DETAILS USE MATRIX - SOLID (S), WATER (W)	ER (W)	CONTAINER INFORMATION	AN) Whe	ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unfiltered bottle required) or dissolved (field filtered bottle required).	, specify Total (unfi	ES (NB.	. Suite C ottle requ	odes must b lired) or diss	e listed to olved (field	attract s filtered	suite p d bottle	required).	Additional Information
LAB ID SAMPLE ID DA	DATE/ TIME	MATRIX TYPE & PRESERVATIVE (refer to codes below)	TOTAL CONTAINERS	S-26 Asbestos Alisence/ Alesence EAZOO	EA00 2 EA001	EADIO	ED 0935	EP 008 FAISO H-	EAISZ	k074	FK 058	Е Р ОЧЮТ	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
25 TP05-0.0-0.15 18	18/02/16	5	2 JALI 3 BAGS		x x	x	×	×					
TP05, 0					x x	x	X	-	X	_			
TP05_ 0.8 - 1.0			×	x X	x X	\mathbf{x}	×	$\boldsymbol{\lambda}$	$\boldsymbol{\lambda}$				
1-8 TPOS_ 1.4-1.5 18	18/02/16	S	1 OAG										-
						+							
						\uparrow							
								•			_		
											$ \rightarrow$		
							·						
		TOTAL											
Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - Alifreight Unpreserved Plastic; VS = VOA Vial Sulfuric Preserved; AV = Alifreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCl preserved Plastic; HS = HCl preserved Speciation bottle; SP = Sulfuric Preserved Plastic; LI = Lugols Iodine Preserved; STT = Sterile Sodium Thiosulfate Preserved; Z = Zinc Acetate Preserved Bottle; E = Ed TA Preserved Bottle; ST = Sterile Bottle Soli Container Codes; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bag.	erved Plastic; ORC = d; AV = Airfreight Unpr erved; Z = Zinc Acetat	Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; eserved Vial SG = Sulfuric Preserved Amber Glass; H = HCl p ie Preserved Bottle; E = Ed TA Preserved Bottles; ST = Sterile B	S = Sodium Hyd oreserved Plastic; Bottle <i>Soil Conta</i>	roxide Preserved Plastic; AC HS = HCl preserved Specia <i>iner Codes:</i> ASS = Plastic	3 = Amber Glass Unpre ation bottle; SP = Sulfur Bag for Acid Sulphate	eserved; ric Preserv Soils; B =	ved Plastic Unpreser	ved Bag.		-			233255

Appendix IB

Soil Investigation Report

100 Christie Street St Leonards NSW 2065 Australia PO Box 164 St Leonards NSW 2065 Australia T +61 2 9928 2100 F +61 2 9928 2500 www.jacobs.com

11 March 2016

Mr Daniel Noaeen Transurban Level 9 1 Chifley Square Sydney NSW 2000

Our ref: IA104600

Soils Investigation: M2 – Macquarie Park Motorscapes Project

1. Introduction

Jacobs (Australia) Pty Ltd (Jacobs) were commissioned by Transurban to conduct an on-site soil assessment and survey for development of vacant land located adjacent to the M2 Motorway, Macquarie Park NSW (the site).

Transurban is seeking to rehabilitate approximately five hectares of the leased site, substantially improving its ecological functionality and increasing community engagement. Works will include landform modification and re-vegetation of the disturbed area.

The site has been significantly modified from its original condition, with the central part of the site recently occupied by a secure storage compound for plant and equipment used to upgrade M2 infrastructure. The site will be managed by Transurban until the lease agreement expires in 2048.

The objective of the project is to identify which soils are potentially valuable for landscaping. The scope of the study is as follows:

- Site survey and soils investigation
- Interpretation of results
- Proposal soil management measures

This assessment outlines the results of the investigation.

1.1 Soils for landscaping

A landscape soil is defined as 'An anthropic soil profile that is either modified from a natural in situ soil or manufactured and installed using artificial components for the purpose of sustaining vegetation chosen for landscape design or land rehabilitation' (Leake & Haege 2014).

For a soil to be suitable for landscaping purposes, it must have physical, chemical and biological properties that are suitable for reliable establishment of vegetation. The Australian Standard for Garden Soils (AS2223) defines the general requirements for soils for domestic use as 'General purpose soils shall be of a friable porous nature. General purpose soils shall not set hard or become difficult to work (lose their friable nature) as a consequence of water drying

11 March 2016 Soils Investigation: M2 – Macquarie Park Motorscapes Project

out of the soil following precipitation or domestic watering'. While this description is specific to garden soils, it is useful as a general guide to soil properties for landscaping.

Understanding the soil resource is a vital and influential step in the processes of determining the quality of soils for landscaping purposes. Once there is knowledge of the soil resource, the soil approach method can be determined.

To understand the soil resource, the observations outlined in **Table 1** are used as a guide. The checklist is dependent on the nature of the soil/material being investigated.

Aspect	Observations
General site	Slope, Aspect and slope position
Vegetation	Species and condition of vegetation
	Degree of alteration from natural conditions
	Presence and condition of any weeds
	Degree of stress and/or disease
Surface conditions	Grass and forbs
	Intact litter layer
	Crusted or compacted surface
Topsoil	Depth
	Colour, texture, structure
	Moisture condition
	Presence of inclusions (anthropic objects)
	Degree of compacting
	Surface cracking and crusting
	Presence of any pallid layer (A2 horizon) on top of the subsoil
Subsoil	Depth of boundary
	Depth of subsoil
	Colour, texture, structure
	Colour and texture changes to the deep subsoil
	Depth to parent material

Table 1: Site observation list (Haege & Leake 2014)

To evaluate the soil resource at the site, existing soils data was reviewed, and a field survey undertaken. The following sections outline the scope of the survey and the results of the investigation.

2. Existing Geology and Soils

The geology of the area is characterised by the plateau surfaces of the Mittagong Formation. The Mittagong Formation is comprised of Hawkesbury Sandstone and Wianamatta Shale. These lithologies act as the parent material for soil formation, which is further reflected by the variation in native vegetation establishment.

The soils of the project area are a combination of Lucas Heights soil landscape in the south and Gymea soil landscape in the north The Lucas Height landscape is characterised by gentle undulating crest and ridge with moderately deep hard-setting duplex sand gradational soils. The Gymea landscape is typically characterised by gently rolling low hills on Hawkesbury Sandstone with a wide range of soil properties. Soils in the area can have low fertility, stony steep slopes and high soil erosion.

3. Soil Sampling and Analysis

3.1 Sampling

All fieldwork was undertaken by an experienced Jacobs environmental scientist between 17 and 18 February 2016, and was run in parallel with the preliminary contamination investigation (PCI).

The site survey has been divided into three distinct areas, consistent with the PCI as outlined below:

- Area 1 Industrial Creek (BH01 & BH02)
- Area 2 Former compound site (TP01 TP05)
- Area 3 Shrimptons Creek (BH03)

A track mounted excavator was used for excavation of test pits to a depth of 1.5 m below ground level (blg) at five locations within Area 2 (TP01 to TP05). Two boreholes (BH01 and BH02) were drilled within Area 1 (Industrial Creek) and one borehole (BH03) was drilled within Area 3 (Shrimptons Creek) to a maximum depth of 1.0 mbgl with the aid of a decontaminated hand auger. Sampling locations are illustrated in Figure 1..

Test pit samples were collected directly from the centre of the excavator bucket. Borehole samples were collected directly from the auger head. Care was taken to ensure representative samples were obtained from the required depth. Excess material generated during excavation of test pits and boreholes were backfilled in the approximate order of excavation.

Sample collection was in line with contaminated procedures. Sampling equipment was decontaminated between samples and sites. All samples were placed in soil jars, sealed and immediately placed in an esky / cool box to keep sample temperature below approximately 4°C. Samples were then transported to the laboratory under strict Chain of Custody procedures.

11 March 2016 Soils Investigation: M2 – Macquarie Park Motorscapes Project

3.2 Analysis

A total of 15 samples were analysed for soil properties at a National Association of Testing Authorities (NATA) accredited laboratory, with the analytical suite outlined in **Table 2** below.

Table 2: Laboratory analysis suite

Chemical	Physical	Nutrient
 pH (CaCl₂) pH (H₂O) Electrical conductivity (µS/cm) Exchangeable Cations Cation Exchange Capacity Exchangeable Sodium Percentage (ESP) 	 Particle Size Distribution Moisture content Soil particle density 	 Sulfur as Sulfate Nitrogen as Nitrate Nitrogen as Nitrite Fluoride extractable Phosphorus (Bray)

Analysis was undertaken on samples from each distinct area:

- Area 1: Industrial Creek 1 sample
- Area 2: Former compound site 13 samples
- Area 3: Shrimptons Creek 1 sample

4. Results

4.1 Field observations

The site was generally covered in long grass and small shrubs, with a vegetative cover of >80%. In the majority of profiles, roots were abundant within the top 10 cm, varying in size from coarse to fine.

Observations at Area 1 indicated a distinct topsoil layer (herein referred to as M2 topsoil) overlying fill material. At Area 1 and Area 3, the fill materials (herein referred to as the M2 subsoils) were generally comprised of disturbed soil material. Silty and sandy clays were noted in the M2 subsoils consisting of fine to medium grained sands with minor sandstone and shale inclusions.

The fill materials within Area 2 (herein referred to as the M2 waste soils) were comprised of sandstone, shale and concrete with minor inclusions of other waste materials (e.g. wood and plastic). The <2 mm fraction of the M2 waste soils were dominated by sandy and silty clays, with medium to coarse sand grains. Larger size fractions consist of sandstone, shale and concrete cobbles and boulders. Moisture content increased down the profiles, in most cases from dry to moderately moist.

Based on the above, three distinct material types were identified at site:

- Area 1 M2 Topsoil overlying M2 subsoils (minor sandstone/shale inclusions)
- Area 2 M2 waste soils (wood, concrete and plastic inclusions)
- Area 3 M2 subsoils (minor sandstone/shale inclusions)

11 March 2016 Soils Investigation: M2 – Macquarie Park Motorscapes Project

Based on the Australian Soil Classification (ASC), the soils of the area are classified as Anthroposols (Isbell 2002). These are soils that result from human activities which cause profound modification, mixing, truncation or burial of the original soil horizons.

Stratigraphic information is detailed in the test pit and bore logs provided in **Appendix A**.

4.2 Analytical results

The results from the laboratory analyses are provided in **Table 3**, with laboratory reports provided in **Appendix B**.

. .

Table 3: Laboratory results

Sample No. pH (H		pH (H ₂ 0) pH (CaCl ₂)		H (H₂0) pH (CaCl₂)	EC		Particle Size	Distribution (%)		Density	E	Exchangeabl	e Cations (meq/10	0g)	CEC	ESP	SO4 ²⁻	Nitrite	Nitrate	Ext. P
		pH unit	dS/m	Clay (<2 µm)	Silt (2-60 μm)	Sand (0.06- 2.00 mm)	Gravel (>2mm)	g/cm³	Ca ²⁺	Mg ²⁺	K	Na⁺	meq/100g	%	mg/kg	mg/kg	mg/kg	mg/kg		
BH01 0.0 – 0.15 m	6.4	5.8	0.13	19	25	56	<1	2.49	10.9	3.0	0.1	0.5	14.5	3.7	820	<0.1	5.1	8.8		
BH03 0.0 – 0.15 m	7.9	6.0	0.07	14	26	36	24	2.49	5.6	6.0	<0.2	0.3	11.9	2.2	-	-	-	-		
TP01 0.0 – 0.15 m	8.5	6.7	0.12	15	21	42	22	2.65	4.1	1.7	<0.2	<0.2	5.8	<0.2	-	-	-	-		
TP01 0.8 – 1.0 m	8.3	6.9	0.25	17	19	34	30	2.66	3.0	2.7	<0.2	0.2	5.9	3.7	260	<0.1	<0.1	1.5		
TP02 0.0 – 0.15 m	7.5	6.8	0.07	16	16	54	14	2.58	3.0	1.5	<0.2	<0.2	4.5	<0.2	240	0.2	0.7	2.9		
TP02 0.4 – 0.6 m	8.5	7.4	0.14	15	16	44	25	2.63	4.2	2.1	<0.2	<0.2	6.3	<0.2	-	-	-	-		
TP02 0.8 – 1.0 m	8.6	7.4	0.11	11	13	43	33	2.64	3.6	1.0	<0.2	<0.2	4.6	<0.2	-	-	-	-		
TP03 0.0 – 0.15 m	8.6	6.7	0.13	15	15	47	23	2.64	4.4	1.0	<0.2	<0.2	5.4	<0.2	-	-	-	-		
TP03 0.4 – 0.6 m	6.9	6.4	0.05	22	22	42	14	2.65	3.2	2.1	0.1	0.3	5.7	4.7	200	<0.1	0.1	<0.1		
TP03 0.8 – 1.0 m	7.8	6.5	0.09	25	23	41	11	2.66	3.4	2.6	<0.2	<0.2	6.0	<0.2	-	-	-	-		
TP04 0.0 – 0.15 m	8.7	7.0	0.13	15	16	49	20	2.63	5.9	1.3	<0.2	<0.2	7.2	<0.2	430	0.2	0.5	2.9		
TP04 0.4 – 0.6 m	7.0	5.8	0.05	25	25	39	11	2.63	2.6	2.2	0.1	0.1	5.0	2.6	-	-	-	-		
TP05 0.0 – 0.15 m	7.3	5.8	0.02	17	20	50	13	2.48	3.8	1.8	0.2	<0.2	5.8	<0.2	-	-	-	-		
TP05 0.4 – 0.6 m	7.0	5.8	0.05	21	26	39	14	2.62	3.6	1.6	0.1	0.2	5.5	4.4	-	-	-	-		
TP05 0.8 – 1.0 m	7.8	6.0	0.05	11	16	67	6	2.60	3.1	1.4	<0.2	<0.2	4.5	<0.2	-	-	-	-		

Area 1 – Industrial Creek

Results from analysis of the single M2 topsoil sample (BH01, 0-0.15 m) indicate the soil is dominated by sand sized particles (56%), with significant portions of silt (25%) and clay (19%). No gravel (particles > 2 mm in size) is present within the sample.

The M2 topsoil is classed as neutral and non-saline. The cation exchange capacity is moderate, indicating that the soil has a reasonable capacity to retain nutrients and is considered stable (Hazelton & Murphy 2007). This is further illustrated by a low ESP (<5%) indicating a low susceptibility to clay dispersion (Hazelton & Murphy 2007). Nitrate levels are low, available phosphorus is low to moderate and sulfate levels are moderate to high (Hazelton & Murphy 2007).

No samples were taken of the underlying fill material was undertaken. Based on the soil logs, the observations of the fill material indicated a likeness in material properties to those observed in Area 3 fill, and for the purpose of this investigation both are considered as M2 subsoil.

Area 2 – Former Compound Site

Samples taken from the M2 waste soil at the former compound site (TP01 – TP05) contained primarily sand (34 - 67%) and gravel (6 - 33%), with lower proportions of silt (13 - 25%) and clay (11 - 25%).

The M2 waste soil ranges from neutral to alkaline, with all samples classed as non-saline. The cation exchange capacities are low across the samples, indicating a low capability to retain nutrients. ESP results indicate the samples have a low risk of clay dispersion and are considered stable. Nitrate and available phosphorus are low in all samples (Hazelton & Murphy 2007). Sulfate levels are low to moderate.

Overall, the M2 waste soils are composed primarily of sand, with similar proportions of gravel, silt and clay. The materials lack the ability to retain nutrients and had generally low nutrient levels across the board. Additionally, properties were similar across the sampling depths, indicating the material is homogenous.

Area 3 – Shrimptons Creek

Results from analysis of the M2 subsoil (BH03, 0-15 m) show a significant portion of sand (36%), silt (26%) and gravel (24%), with a smaller fraction of clay (14%). This is similar to the fill material within Area 2.

The M2 subsoil is classed as neutral and non-saline. The cation exchange capacity is borderline low to moderate, indicating the fill material has a reasonable capacity to retain nutrients and is considered stable (Hazelton & Murphy 2007). Similar to the M2 waste soils, the M2 subsoil is characterised by a low ESP indicating a low risk of clay dispersion.

Nutrient levels were not analysed for the M2 subsoil, but are expected to be in line with samples from the M2 waste soil given the similarity in material properties.

5. Soils Management Strategy

5.1 Soil Approach Method

There are three approaches that can be adopted when considering the use of soils for landscaping:

- 1. Use the existing site soils 'as found' without modification
- 2. Recovery, conditioning soil and importing soils to improve its characteristics

3. Properties are considered too inhibitive for use in landscaping

It is necessary to consider the type of soil profile required to support the intended landscape treatment in a sustainable way with minimum of maintenance inputs (irrigation, fertiliser, etc.) and with reasonable growth and appearance. The soil method approach is outlined in **Table 4** below.

No.	Method	Purpose				
1	Use existing site soil as is	If appropriate and the nutrition is adequate for optimal growth an health of proposed plant material. Most common in lan rehabilitation and mass planting.				
2	Use existing site soil with recovery, conditioning and improvement Recovery and re-use may require imported materials such ameliorants (lime and gypsum) fertilisers and integration of org- matter to the top horizon and de-compaction and amelioration subsoils					
3	Integrate imported soil with existing site soil	Such as where depth needs to be increased or texture needs modifying (e.g. adding sand to playing field soils)				
4	Use existing site soils but import new soils for specific locations	A common important requirement is for sandy root zone soils for sports field topsoils (e.g. a playing field in a housing development). Other landscape areas can use site soils as is or improved.				
5	Import and install new topsoil, ameliorate subsoil or subgrade	Where the subgrade is adequate and there is no available topsoil (e.g. site has been stripped of all topsoil, such as in a contaminated area or brownfields site). A common example is placing imported topsoil over former landfill sites. Most often subsoil or subgrade will need to be ameliorated.				
6	Import and install new subgrade material and topsoil or container soil media	The most common example where no existing soil is available or the site is completely manufactured (such as on a rooftop or vertical wall). This will be the case in most CBD developments.				

The best approach is dependent on the proposed landscaping use. A sports park or golf course will have different requirements to vegetation of a housing development. The nature of the soil on a site will have an overriding influence on design as any other site factor. Soil factors also influence the landscape objectives, e.g. the presence of alkaline soils will rule out plant species that are intolerant of alkaline conditions.

The soil management strategy is dependent of the intended use. The landscape design is based on re-instatement of native bush land. To achieve the intended landscape purpose the limiting properties to establishment of vegetation will be identified, and the most appropriate soil method (as outlined in **Table 3**) will be recommended.

5.2 Proposed land use

The vegetation community proposed for rehabilitation of the site is Hornsby Enriched Sandstone Exposed Woodland (HESEW). Providing the soil properties prove suitable, species of Sydney Turpentine Ironbark Forest (STIF) will also be included.

For effective establishment of native bushland (including HESEW vegetation community), the following soil properties are desirable:

11 March 2016 Soils Investigation: M2 – Macquarie Park Motorscapes Project

- Well drained soils with a low water table
- Neither strongly alkaline or strongly acidic
- Non-saline to moderately saline
- Low to moderate fertility
- No risk of dispersion

For establishment of STIF vegetation community, the following additional properties are desirable:

- Moderately wet soils throughout the year
- Clay rich soils to retain moisture

5.3 Evaluation of soil resources

The properties of the M2 topsoil were generally favourable. The abundance of silt and clay (44%) indicates a high water holding capacity, but presents a potential limitation to drainage. Fine clay and silt can fill the spaces between the sand grains, blocking the pores and slowing drainage.

A neutral pH and low salt content provide good conditions for the establishment of vegetation. Nutrient levels were moderate within the topsoil. Additionally, the high percentage of silt and clay increases the capacity of the soil to hold nutrients. An abundance of grass and shrub cover on the surface indicates that the topsoil has a strong capacity to support vegetation.

Both M2 waste soil (Area 2) and M2 subsoil (Area 3) had similar characteristics. On average, the proportion of silt and clay in the fill material was high (37%), and similar to the topsoil will present a potential limitation to drainage. The alkalinity in some of the materials could present a challenge to non-resistant vegetative species, or species that favour acidic environments.

Nutrient levels were generally low to very low in the M2 waste soil, as typically associated with bush land sites. The establishment of thick grass cover on the fill material indicates that there is a capacity to support some species of vegetation. The wood, concrete and sandstone/siltstone inclusions may prevent the use of the M2 waste soil for more intensive landscaping purposes.

5.4 Limiting factors

The following limiting factors may affect the potential re-use of the M2 topsoil (Area 1):

• High silt and clay abundance potentially reducing permeability

The following limiting factors may affect potential re-use of the M2 waste soils (Area 2) and M2 subsoils (Area 1 & 3)

- High silt and clay abundance potentially reducing permeability
- Alkalinity in some materials
- Low nutrient levels
- Low capacity to retain nutrients
- Wood, concrete and sandstone/siltstone inclusions (M2 waste soils only)

5.5 Management strategies

Based on the limiting factors as outlined above, the M2 topsoils, M2 subsoils & M2 waste soils have some potential for use for establishment of native vegetation. Strategies to manage the material are outlined below.

M2 Topsoil (Area 1)

The effect of reduced permeability of the topsoil is dependent on the intended use. The high proportions of silt and clay will assist in retaining moisture and provide moderately wet soils throughout the year, which may provide suitable conditions for establishment of the STIF community. However, the material has an overall moderate drainage, and may suffer from pooling of water on the surface during heavy rain.

Mitigation strategies can be built into the inherent design, and include strategies such as:

- Preventative drainage: surface drainage is used to divert and prevent excess run-on from upslope from impacting a site. This can include installation of diversion ditches and swales to divert and conduct water around the site, or by a sloping design to prevent ponding of runoff.
- Curative drainage: this includes strategies such as buried drainage, vertical drainage, cellular drainage, and filters to reduce the accumulation of water in the soil profile.

Given thelf these options are not viable, the next step is to consider integrating imported soil with the existing topsoil. Importing sandy soil from offsite and mixing it with the topsoil material will increase the proportion of sand, and reduce the influence of the silt and clay fractions.

M2 waste soil (Area 3)

The M2 waste soils have several potentially limiting factors depending on the proposed landscaping purpose.

The alkalinity may present an issue for some plant species, and can reduce the availability of some nutrients. The addition of an ameliorant is not recommended, as lowering the pH of soils above 7.5 is considered difficult and impractical. As the alkalinity is limited to only some of the fill material, vegetation can be targeted to each area. Alkaline resistant species can be planted in moderately alkaline areas, and a wider variety of vegetation used in neutral zones. This would also provide natural variability in the establishment of vegetation.

Large inclusions such as wood, concrete and sandstone/siltstone present in Area 2 fill material should be removed if the material is to act as topsoil. This can be as simple as traversing the site and removing all obvious inclusions from the top 0.15 m of the profile. If the fill material is used as subsoil, the inclusions should not impact on the proposed use.

While the nutrient levels are considered as low, this is in line with the soils of the area and should not inhibit establishment of native bushland. The addition of fertilisers may help with initial vegetative growth, but is likely to encourage weed infestation.

M2 subsoil (Area 1 & Area 3)

Strategies for management of the M2 subsoils are the same as above for M2 waste soil, with the exception of the large inclusions of wood, concrete and plastics. As a result, these materials

require fewer management strategies, and if used as subsoil a thinner layer of topsoil would be required.

5.6 Recommendations

The M2 topsoil from Area 1 could be used as the top layer in a constructed soil profile for native bushland. The permeability of the topsoil along with significant proportions of silt and clay may provide the appropriate conditions for establishment of the STIF vegetation community. The other option is to implement management techniques (preventative or curative drainage), to increase the permeability of the topsoil. If a mitigated design is not possible, importing sand will improve the material properties.

Overall, the following methods are proposed for the M2 Topsoil:

- Use existing site soil as is (method 1): Given the good qualities of the soil, it is generally suitable for use without amelioration or management strategies. While there is a risk of reduced permeability, the properties of the material could provide variation in the establishment of vegetation similar to the natural bushland.
- Integrate imported soil with existing site soil (method 3): If the reduced permeability presents too great a risk to the establishment of native bushland, sandier soils could be imported and mixed to reduce the overall proportion of silt and clay.

The M2 waste soil from Area 2 has some potential for use for landscaping purposes, but is limited by its inherent properties. It has the capacity to sustain vegetation and could be used without adjustment for low rehabilitation with native vegetation without amelioration. However, large inclusions in the M2 waste soil may prohibit its use as a growth media. Additionally, the M2 waste soil could be used as a subsoil layer in a reconstructed profile.

Overall, the following methods are proposed for the M2 waste soil:

- Use existing site soil as is (method 1): While the M2 waste soils have some limitations, their overall properties are sufficient for the establishment of the HESEW vegetation community. However, the inclusions (Area 2 fill material) may inhibit the use of equipment for revegetation, and provide a site safety issue.
- Use existing site soils but import new soils for specific locations (method 4): By using the M2 waste soils in some areas and covering them with a suitable material in other areas, natural variation in vegetative communities will be encouraged. The inclusions would still need to be managed in areas where the fill material is exposed. Imported material could be either sandy or clay soils.
- Import and install new topsoil, ameliorate subsoil or subgrade (method 5): The M2 waste soils are well suited for use as subsoil. Importing a new material to cover the material would mitigate its associated limitations. This would also prevent any deleterious effects from the wood, concrete and plastic inclusions.

For methods three to five, commercially supplied topsoil with low phosphorus content can be imported. The topsoil would provide both an unconsolidated physical cap on the top of the current material and a suitable growth media for native vegetation.

It must be noted that the outcomes of the preliminary site investigation indicate the presence of asbestos fibres in fill material within Area 2, with the potential for asbestos to be present in other locations. As a result, the fill material throughout the site may not be suitable for use in

11 March 2016 Soils Investigation: M2 – Macquarie Park Motorscapes Project

landscaping. Confirmation of the risk will need to be confirmed prior to the adoption of method 1 3, and 4.

Based on the above, the final recommendations are as follows:

- Import 0.5 m of sandy soil to mix with the M2 topsoil to increase the drainage potential of the soil at Area 1.
- Place a 0.5 m layer of imported topsoil on top of the M2 waste soils (Area 2).
 Commercially supplied topsoil will contain beneficial properties to enable establishment of the HESEW and STIF vegetation communities.
- Import 0.5 m of a balanced sand/clay soils to place above the M2 subsoils (**Area 3**). A sand/clay mix will assist in retaining nutrients without decreasing drainage.
- Imported material (Areas 2 & 3) should be placed to a minimum of 0.5 m over all existing fill material to prevent exposure of asbestos as a precautionary method. This strategy is subject to change based on confirmation of the extent of asbestos exposure.

Yours sincerely

Isaac Kelder Soil Scientist +61 8 9469 4397 Isaac.Kelder@Jacobs.com

Appendix J

Monitoring Plan

Monitoring Plan

Hills M2 Biolink Reserve Macquarie Park

Document Control

Project Name

HILLS M2 BIOLINK RESERVE

		Date
Prepared by	Alastair Jones	29/2/2016
Reviewed by	Shane Norrish	29/2/2016
Approved by	Shane Norrish	29/2/2016

Revision date	Amendment Description
29/2/2016	Draft Version 1

Disclaimer

This document may only be used in accordance with the contract between Landcare Australia Pty Ltd and Transurban. The scope of services was defined in agreement with Transurban, and preparation has relied upon the data and results collected at the time and under the conditions specified in the report and the availability of information and other data on the subject property. Legislation, regulations, and relevant information changes on an on-going basis. Readers are advised to obtain up to date Information.

Landcare Australia Pty Ltd has prepared this report for Transurban and accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report and its supporting material by any third party. Information provided is not intended to be a substitute for site specific assessment or legal advice in relation to any matter.

Cover Photos: L-R; Table drain, Shrimptons Creek riparian vegetation, Industrial Creek bank erosion.

Contents

1. In	troduc	tion	5
2. Pr	oject g	oals and monitoring objectives	6
2.1.	Pro	ect Target	6
2.1.	Goa	ls	6
2.2.	Obj	ectives	6
3. M	onitori	ng Framework	7
4. Ba	aseline	data	8
4.1.	Flor	a and fauna assessment	8
4.2.	Pho	topoint monitoring	8
5. Th	nreat a	ssessment	9
5.1.	We	ed monitoring	9
5.2.	Poll	ution and Erosion Monitoring	9
5.3.	Pes	t Animal Monitoring - Rabbits	9
5.	3.1.	Rabbit population density	10
5.	3.2.	Rabbit Damage	10
5.	3.3.	Rabbit corrected regeneration score	10
5.	3.4.	Seedlings and damage thresholds	11
5.4.	Pes	t invertebrates	11
6. Pł	nysical	Condition Data	12
6.1.	Eros	sion and assessing effectiveness of stormwater interventions	12
7. Sp	oecies (Composition and community structure data	12
8. M	anager	nent implementation data	12
8.1.	Spe	cies selection	12
8.2.	Reg	eneration methodology	13
8.3.	Plar	nting survival	13
8.4.	Oth	er	14
9. M	onitori	ng frequency	14
10.	Data r	nanagement	15
10.1	. D	ata integrity	15
10.2	. D	ata security	15
10.3	. N	laintaining metadata	15
11.	Assess	ment of Recovery	15
12.	Refere	ences	19
Appen	dix A	Photopoint Monitoring Baseline Data	20

List of Tables

Table 1 M2 Park Urban Biolink Objectives	.7
Table 2 Summary of standards for 1-5 recovery levels for M2 Park Biolink. (Note each level is	
cumulative and attributes will progress at different rates)1	16
Table 3 M2 Park Biolink Reserve Recovery Scale (Note: the 5-star scale represents a gradient from	
very low to very high similarity to the reference ecosystem)1	16

List of Figures

5
0
1
8
1

1. Introduction

Through our partnership with Transurban, Landcare Australia has been requested to implement an innovative urban landcare initiative for a site adjoining the Hills M2 Motorway in Macquarie Park, NSW. As part of the Hills M2 Motorway Agreement, Transurban leases the site on the northern side of the M2 Motorway between Khartoum Road and Christies Road (**Figure 1**). The site has been significantly modified from its original condition and the central part of the site was recently occupied by a secure storage compound for plant and equipment used to upgrade M2 infrastructure. The site will be managed by Transurban until the lease agreement expires in 2048. Consistent with their significant commitment to sustainability and encouraging positive impacts with stakeholders and the environment, Transurban is seeking to rehabilitate approximately eight hectares of the leased site, substantially improving its ecological functionality and increasing community engagement. Roads and Maritime Services NSW is the owner of the site and will provide final approval for any rehabilitation works and improved ecological condition.

Figure 1 Transurban Cultural Biolink rehabilitation site adjoining the Hills M2 Motorway, Macquarie Park NSW

This Monitoring Plan (the 'Plan') outlines project goals, monitoring objectives and data collection methodology. The Plan outlines key steps to assess ecological recovery of the site.

2. Project goals and monitoring objectives

2.1. Project Target

The rehabilitation work will have a strong focus on establishing Sydney Turpentine-Ironbark Forest

(STIF), with the primary location on consolidated higher clay content fill deck area. Sydney Turpentine-Ironbark Forest is an endangered ecological community listed under the *Threatened Species Conservation Act 1995* (NSW). Once a widespread vegetation community, there is less than 0.5% of the original area of this species assemblage remaining intact. Characteristic tree species in the STIF community are *Syncarpia glomulifera*, *Eucalyptus globoidea*, *Eucalyptus resinifera*, *Eucalyptus paniculata*, *Angophora costata* and *Angophora floribunda*.

Sydney Turpentine–Ironbark Forest is an open-forest association occurring on moderately wet sites, with an annual rainfall of 800–1,100 mm per year, growing on clay soils derived from Wianamatta shale (DECC NSW, 2008)

2.1. Goals

The following goals describe the status of the target community the project is aiming to achieve and, broadly, how it will be achieved. Project goals include:

- Rehabilitate the Subject Property (approximately 5.4 ha) to improve the native bushland condition, ecological functionality and community engagement;
- Reduce current off-site impacts on adjoining properties, particularly Lane Cove National Park, through including actions for weed control, revegetation, vertebrate pest management, creek riparian zone stability and improvements to site drainage;
- Map weed density, identify vectors for spreading weeds between adjoining properties and identify priority areas for weed control within the M2 Biolink Reserve and in adjacent areas;
- Provide strategies and actions to facilitate an indigenous vegetation community that may include appropriate selected species of the STIF critically endangered ecological community;
- Guide interventions to mitigate impacts caused by past land uses, and then on-going management of the rehabilitated bushland to establish and then protect significantly improved conservation values;
- To establish and protect bushland, inclusive of a healthy groundcover stratum as a natural stabiliser of the soil surface;
- To improve water quality in Shrimptons and Industrial Creeks which drain the Subject Property; and
- To retain bushland in a size and configuration that will enable the existing plant and animal communities to survive in the long term and adapt to impacts of climate change through enhanced connectivity to a local and regional network of bushland.

2.2. Objectives

Objectives list the specific changes and outcomes required to meet the goals identified in Section 2.1. Objectives are divided based on ecosystem attributes identified in the *Draft National Standards for the practice of Ecological Restoration in Australia,* SERA Australasia, 2015. M2 Park Urban biolink site specific objectives are provided in Table 1.

Table 1 M2 Park Urban Biolink Objectives

Attribute Detail	Objective
Controlling	Less than 5% cover of exotic plant species within 3 years
Threats	Rabbit populations reduced to 0.5/ha on site within 2 years
Physical	Concentration of contaminants entering Shrimpton's creek is reduced through
conditions	the implementation of a stormwater infrastructure
	Soil quality appropriate for planting of STIF community (e.g. low phosphorous) at time of establishment
	Pollution entering Industrial creek reduced through implementation of trash rack
Species	Woody and herbaceous weeds reduced to <5% cover and represented by only
composition	benign species within 3 years
	>50% canopy cover of native trees within 5 years
	Number of native fauna species utilizing the site increased by 10% within 5
	years
Community	Characteristic diversity of native plant species from each stratum established
Structure	and reflective of reference site
Ecosystem	Planted native species regenerating and producing seed
Function	
External	Water quality has increased when discharged offsite via Shrimpton's creek into
Exchanges	Lane Cove River.

3. Monitoring Framework

The M2 Park Monitoring Plan (the 'Plan') includes the collection of:

- Baseline data: Baseline assessments will be carried out before the commencement of work at the M2 Park site and at a suitable reference site in the Lane Cove National Park. This will provide data against which the restoration works can be assessed and evaluated.
- Photo point monitoring data
- Threat data
 - o Assessment of weeds and weed mapping
 - Assessment of pest animal populations
- Physical Condition data
 - Condition assessment type and degree of threats that cause degradation, damage or destruction on the site and ways to mitigate these. This includes:
 - Soil quality
 - Creek bank stability
- Species Composition and community structure data
 - Flora and fauna assessment identifying the main ecological communities, component species native and non-native, and likely presence of any threatened species
 - Assessment of ecosystem function including logs, leaf litter, bare ground, presence and absence of other functional groups (e.g. fungi)
- Management Implementation data: captures key activities, weed and pest animal control techniques, plant survival and the regeneration method used on site.

4. Baseline data

4.1. Flora and fauna assessment

A baseline flora and fauna assessment was completed by UBM consultants in February 2016 (Ecological Investigations: Flora and fauna survey report). The subsequent report provides a list of native and non-native flora and fauna occurring at the site, a weed map, identification of threats likely to impact regeneration and a description of habitat characteristics.

A baseline assessment of a suitable reference site (nominally remnant STIF community at Macquarie University) will be completed using quadrat methodology. A 30 X 30 m quadrat will be established and the species (native, non-native), their height and cover will be recorded. Other ecosystem attributes including leaf litter cover, canopy cover, percent bare ground and presence/absence of logs, hollows will be recorded. This will form the reference ecosystem condition to which the M2 Park restoration will aim to achieve in the long-term.

4.2. Photopoint monitoring

A total of 11 photopoint sites were established by Landcare Australia staff on 19 January 2016 and their location mapped using a GPS. An additional 32 sites were established on 18 February.large number of sites will allow flexibility in monitoring change throughout the project.

To ensure high quality images a digital camera was set to between ISO200 and ISO400 and the image type selected to the largest JPEG setting. The camera was set to landscape selection to ensure the image is focused appropriately. Photopoint locations were chosen to capture projected changes in the landscape without needing to change position. Where possible the works will be located to the south of the photopoint sites to reduce the impact of light flare degradation of the photograph. The photo points were geo-referenced and the direction they were taken recorded in order to replicate in subsequent sampling periods.

At least two photographs looking in different directions were taken at each monitoring site. Images were downloaded as soon as possible and renamed to reflect the site name, project number, date and time and image number. The images are stored electronically and backed up on a separate server.

Results of baseline photopoint monitoring for the first suite of sites are provided in Appendix A .

Photopoint monitoring frequency

Timeframes for ongoing monitoring at photopoint locations established in the baseline assessment will be adaptive. For example, photos may be taken frequently during management works to capture before and after interventions. Photos will then extend to medium to long timeframes as management actions slow and the environmental response is captured. Adaptive timeframes will include:

- Short: before and after management actions (e.g. weed control);
- Medium: every 6-12 months when multiple management actions are undertaken; and
- Long: annual, when management actions complete and more subtle environmental changes are occurring.

5. Threat assessment

The key threats to regeneration of this site that require monitoring include:

- Weeds
- Pest animals (rabbits)
- Pollution
- Erosion

5.1. Weed monitoring

The UBM Vegetation Management Plan (VMP) provides a baseline weed distribution map for the site. During management interventions the map will be periodically updated to reflect removal of weed species and emergence of any new weedy species. Prior to conclusion of intervention works weed mapping will be periodically updated to track emergence of weeds and guide implementation of maintenance requirements.

Weed maps will be updated using GPS in the field. Emergent weed infestations will be recorded and their location mapped using ArcGIS software.

5.2. Pollution and Erosion Monitoring

Pollution, particularly along Shrimptons and Industrial creeks during high rainfall events will be monitored periodically by established photopoint sites.

5.3. Pest Animal Monitoring - Rabbits

The Rabbit Abundance Score developed by Cook, McPhee and Hart (2008) will be used to estimate the level of rabbit activity through the works site. Rabbit warrens as well as scratches and 'buck heaps' or latrines may be present. The abundance of rabbit faeces is the best estimate of their number. The following categories are used in scoring abundance (Cook,McPhee &Hart 2008):

- 0. None found in a 15 minute search
- 1. Isolated pellets and small clumps of 5-10 pellets 10 metres of more apart
- 2. Scattered pellets and clumps less than 10 metres apart
- 3. Common, pellets in larger clumps and occasional buck-heaps on about half the areas observed
- 4. Abundant, pellets often in large clumps and buck-heaps obvious but not present across whole area
- 5. Very abundant, pellets and buck-heaps always apparent

Rabbit warrens will be geo-referenced and mapped to track rabbit control activities.

5.3.1.Rabbit population density

The Rabbit Abundance Score is not a direct measure of abundance or population density. However, an approximate conversion is as follows:

Rabbit Abundance Score	Approximate Density (Adults/Ha)
0	0
1	0.5
2	1
3	2
4	5
5	10 or more

5.3.2.Rabbit Damage

Where seedlings are present it is possible to assess rabbit damage and quantitatively assess impact. Cook, McPhee and Hart (2008) developed a Rabbit Damage Score to provide evidence of rabbit dameg to seedlings less than 0.5 m high. Secateur like cuts through stems, defoliation and gnawing of bark are indications rabbits are actively feeding in an area. Rabbit damage is assessed using the following categories (Cook, Mcphee & Hart 2008):

- 0. No evidence of rabbit damage
- 1. Slight damage to some seedlings
- 2. Obvious damage but confined to some seedlings
- 3. Many seedlings moderately damaged
- 4. Heavy general damage, some seedlings retain foliage
- 5. Foliage, twigs and bark stripped from all seedlings

5.3.3.Rabbit corrected regeneration score

The seedling abundance score (see Section 5.3.4) and rabbit damage scores are used in the below matrix to determine the corrected regeneration score for rabbits. The corrected regeneration score is then used to assess overall rabbit impact in the area.

Seedling abundance	0		2	3	4	-5
Rabbit damage						
0	0.20	1.00	2.00	3.00	4.00	5.00
t	0.20	0.5	1.00	1.50	2.00	2.50
2	0.20	0.34	0.70	1.00	1.30	1.70
3	0.20	0.28	0.50	0.80	1.00	1.30
4	0.20	0.20	0.40	0.60	0.80	1.00
5	0.20	0.20	0.30	0.50	0.70	0.80

Figure 2. Matrix to determine corrected regeneration score using Seedling Abundance and Rabbit Damage scores. Source: Cook, McPhee and Hart (2008)

The overall rabbit impact is determined using the corrected regeneration score and the rabbit damage score and gives a management recommendation for the site.

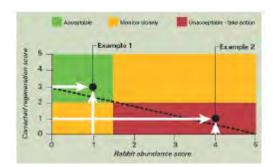


Figure 3. Assessing overall rabbit impact. Source: Cook, McPhee and Hart (2008). Example 1: Corrected Regeneration Score of 3 and rabbit abundance score of 1. Example 2: Corrected regeneration score of 1 and rabbit abundance score of 4.

5.3.4.Seedlings and damage thresholds

Record the vegetation condition within each transect, this is used to record any incidence of pest, disease or environmental constraints that might be affecting vegetation. The following categories are used:

- 0. No damage
- 1. Minor visual damage/discolouration to leaves
- 2. Significant loss of leaf material
- 3. Plant structural damage
- 4. Death

The Seedling Abundance Score (Cook, McPhee & Hart 2008) will be used to estimate the number of seedlings and shrubs that are present at the site that have resulted from natural regeneration. The presence of seedlings is a measure of the health of the vegetation community. The following categories are used:

- 0. None found during 15 minute search
- 1. Very few, only 1-5 individual seedlings encountered
- 2. Uncommon, 6-20 seedlings encountered
- 3. Common, 20-100 seedlings encountered
- 4. Abundant, 100-200 seedlings encountered
- 5. Very abundant, many hundreds of seedlings encountered

5.4. Pest invertebrates

To assess for evidence of pest invertebrates (particularly snails) assess physical signs. Inspecting plants and seedling for actual evidence can be completed by looking at individual plants. Signs of invertebrate activity can be identified on the bases of seedling and tree health in terms of foliage cover and dieback.

The following points can be used to determine the presence of pest insects at the project site:

- 0. No evidence found in a 15 minute search Nil
- 1. Some physical sightings and slight evidence of foliage cover loss and dieback Medium
- 2. Physical sightings and high levels of evidence of foliage cover loss and dieback High
- 3. Abundant physical sightings, low foliage cover and many dead plants Very High

6. Physical Condition Data

6.1. Erosion and assessing effectiveness of stormwater interventions

Established photo monitoring points will track erosion over time pre, during and post intervention.

To assess the success of bioretention facility and retention dam chute realignment gross pollutant traps will be installed in both directions of the new weir at the head of swale. Accumulation of material would be monitored after high rainfall events to determine flow of water. This will act as a proxy determinant to ascertain whether hydrocarbons from the road are discharging into the retention dam or directly into the creek.

7. Species Composition and community structure data

Upon completion of intervention works annual flora and fauna assessments will be completed to determine progress on achieving objectives. This will be completed by:

- Establishing permanent marked and GPS quadrats, 30 m X 30 m on the site. Within each quadrat component species native and non-native, and likely presence of any threatened species will be identified. In addition assessment of ecosystem function including logs, leaf litter, bare ground, presence and absence of other functional groups (e.g. fungi)
- The Reference site will also continue to be monitored using the same methodology to track the M2 park site progress
- Diurnal Fauna assessments will be completed at the same time as vegetation assessments and species recorded via visual assessment.

8. Management implementation data

Implementation attributes will record details about the specifications used to complete the works at the site. This methodology identifies data about regeneration establishment including details on row spacings, seed treatment, equipment usage, seed rates, site preparation and pest plant and animal control.

8.1. Species selection

For the target vegetation community the botanical composition, species name, provenance, seed lot and growth form will be recorded. The planting density (stems/ha) and required spacing for plantings will also be recorded.

8.2. Regeneration methodology

All techniques for restoration, their timing and equipment used will be recorded including:

Site preparation

- Herbicide application (type used, volume used);
- Soil preparation (e.g. scalping);
- Pest animal control techniques (e.g. rabbit baiting);
- Mapping of areas baited/poisoned; and
- Start and finish dates of control actions will be recorded.

Seeding/regeneration

- Natural regeneration: List the species to be retained on site and those most likely to establish;
- Record proportion planted of each species and their density;
- Source of seed for tubestock planting; and
- Continue photopoint monitoring of works throughout implementation phase.

8.3. Planting survival

Monitoring revegetation will be completed via:

- Survival rates, measured by seedling counts;
- Photopoint monitoring sites.

To measure survival at the project site where tubestock has been used, a sample number of each species planted will be recorded along established transects. The number of plants of each species that are surviving will be counted and, divided by the number of plants established of that species and multiplied by 100 to express as % survival. Monitoring for survival will be completed at one, three and 10 months after planting.

% survival = <u>number of remaining plants</u> x 100

number of plants established

8.4. Other

Additional factors that might impact monitoring and management should be recorded. For example:

- Factors affecting the adequacy of the record—such as whether access or vision was limited, or the method used to estimate revegetation;
- Significant events/climatic conditions that might have affected the revegetation site; and
- In the event of revegetation failure, the possible reasons for such failure.

9. Monitoring frequency

The frequency of monitoring will be adequate to detect changes in ecosystem attributes, with greater frequency during the funding programme to estimate plant establishment density and manage threats to the revegetation. Monitoring will also be timed to reflect the impact of events that might influence the vegetation (Atyeo & Thackway 2009), such as pest damage. The site will be monitored multiple times in the first two years post intervention and will become less frequent as vegetation becomes established.

The site conditions and revegetation works will be monitored informally and formally.

Informal monitoring will occur whenever project partners are on site, identifying pests and other threats to revegetation works. Informal monitoring results will be communicated to the Programme Manager to review and implement an appropriate strategy. This may include a site validation and formal monitoring assessment, scheduling or re-scheduling of control works, or no action necessary.

Three, six, nine, 12 and 18 month site assessments

Formal monitoring will occur at a minimum of three, six, nine, 12 and 18 month intervals. This will determine establishment rates and where replacement works are required. These visits will also confirm threat thresholds and required additional management (e.g. pest and weed control).

Pests will be monitored pre-intervention and then at regular intervals after control methods have been applied.

Annual monitoring (2-4 years post intervention)

Two years after planting, monitoring will extend to an annual period and assess the vegetation condition and survival rates of revegetation works.

Long term monitoring (>5 years post intervention)

Many indicators of biodiversity function will not become evident in a site that has undergone revegetation works until at least 5 to 10 years post intervention (Atyeo & Thackway 2009). Vegetation condition and community structure may be monitored annually during this period.

10. Data management

As the revegetation is expected to take 3-5 years to become self-sustaining monitoring changes requires robust data management. Data management will include data integrity, data security and maintaining metadata.

10.1. Data integrity

Data entered into data sheets in the field will be double checked whilst on site. Fieldsheet data will be entered into an Excel spreadsheet as soon as possible after collection (same day or week preferably), while the information is still fresh. The data entered into spreadsheets will be checked for errors by a second staff member with knowledge of the project.

10.2. Data security

At least one backup copy of the data on a suitable long-lasting medium will be created. The original field sheets and a backup copy of the data will be stored in a secure and well-maintained filing system. For additional security, a second back-up copy of the data will be stored at another location.

10.3. Maintaining metadata

Keep a description of the data and methodology used to collect the data with the field sheets and the backup data. Keep a written record of where the data are stored, the format and the names of relevant computer files with the fieldsheets and backup data.

11. Assessment of Recovery

To track progress towards project goals over time, SER Australasia standards recommend a 5-star tool to progressively assess and rank degree of recovery over time. Five-star recovery is the ultimate aim for ecological restoration projects. However, given the location of the site and influences from outside the site boundary (e.g. water quality inputs, introduction of weed seed during flood events) full recovery of some ecosystem functions is unlikely. Full recovery of some attributes (e.g. ecosystem function) can take sufficient time as vegetation maturation and successional processes take long time periods to conclude. This tool is summarised in Table 2 and project specific goals, relative to the six attributes of ecological restoration is provided in Table 3. As recovery is achieved over time segments of the project assessment (Figure 4) can be shaded for each metric after formal or informal evaluation as detailed in Sections 4-8.

 Table 2 Summary of standards for 1-5 recovery levels for M2 Park Biolink. (Note each level is cumulative and attributes will progress at different rates).

Number of Stars	Recovery outcome (modeled on a reference ecosystem)
1	Ongoing deterioration prevented. Substrates contain appropriate chemical composition for
	restoration of vegetation community. Some indigenous biota present. Future improvements of all
	attributes planned and future site management secured
2	Site has a small subset of characteristic indigenous species and there is little if any threat from
	undesirable species. Improved connectivity established with Land Cove National Park
3	Threats being managed or mitigated. A subset of characteristic indigenous species is established.
	Improved connectivity commencing.
4	A substantial subset of characteristic biota present (representing all species groupings) providing
	evidence of a developing community structure. Improved connectivity established and threats
	managed or mitigated
5	Establishment of a characteristic assemblage of biota to a point where structural complexity is
	likely to develop with minimal intervention. Appropriate ecosystem exchanges are enabled to
	allow for recruitment. Long term management arrangements in place.

Table 3 M2 Park Biolink Reserve Recovery Scale (Note: the 5-star scale represents a gradient from very low to very high similarity to the reference ecosystem)

Attribute	1-Star	2-Stars	3 - stars	4-Stars	5-Stars
Absence of	Further	Threats starting	On-site threats	On-site threats	All threats being
threats	deterioration	to be managed or	being managed or	being managed or	managed or
	discontinued and	mitigated. Site	mitigated	mitigated. Off-	mitigated to a
	security arranged	management		site inputs	high extent
	for site	secured		managed or	
				mitigated	
Physical	Physical and	Substrate	Substrate	Substrate	Substrate
conditions	chemical	properties within	maintaining	supporting	exhibiting natural
	problems	natural range for	natural range and	growth of	characteristics
	remediated and	planting of STIF	supporting	characteristic	and supporting
	substrate	community	indigenous	indigenous	species highly
	stabilized		vegetation	vegetation and	similar to that of
				niches suitable	the reference
				for recruitment	ecosystem
Species	<5% of	Small subset of	Subset of key	Intermediate	High diversity of
composition	indigenous	characteristic	indigenous	diversity of	characteristic
	species present	indigenous	species (~25%)	characteristic	species (~80%)
	on site.	species	establishing over	biota (~60%)	across the site
	Significant threat	establishing	substantial	present on site	with high
	from exotic	(~10%). Low	proportions of	representing a	similarity to
	invasive or	threat from	the site, with low	diversity of	reference
	undesirable	invasive or	threat from	species groups.	ecosystem.
	species	undesirable	undesirable	No inhibition by	
		species	species.	undesirable	
				species	
Community	Very low	Low structural	Medium	Community	All vegetation
Structure	structural	complexity	structural	structure is	strata are
	complexity		complexity	developing	established and
	relative to		compared to	including	native fauna from
	reference		reference site	different	different

	ecosystem			successional phases	functional groups are utilizing the site
Ecosystem Function	Substrates and hydrology modified to reflect reference ecosystem	Increased potential for a wider range of functions including habitat provision and resources for native species	Low level functions showing evidence of commencing e.g. provision of habitat	Substantial evidence of key processes commencing including recruitment	Complexity of functions and processes increasing
External Exchanges	Potential for exchanges with surrounding landscape identified	Potential exchanges with surrounding landscape arranged through determination of stormwater improvements	Improved linkages established with surrounding landscape commencing through creek remediation works	Appropriate connectivity with natural areas (Lane Cove national park and river) established to extent practicable.	Potential flows for water optimized and managed as appropriate. Long term management arrangements are in place and operative

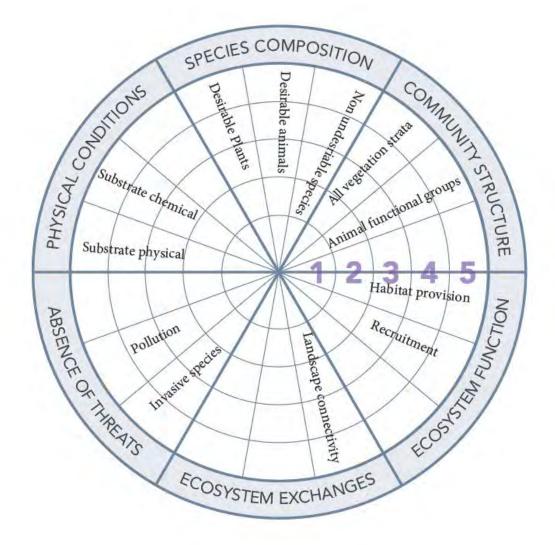


Figure 4. Progress assessment template for M2 Park Biolink (Note: areas can be shaded to visually track progress to project outcomes)

12. References

Atyeo C & Thackway R 2009, A Field Manual for Describing and Mapping Revegetation

Activities in Australia, Bureau of Rural Sciences, Canberra

Cooke B, McPhee S and Hart Q (2008). <u>*Rabbits: A Threat to Conservation and Natural Resource</u></u> <u><i>Management.*</u> Bureau of Rural Sciences, Canberra</u>

Department of Environment and Climate Change (DECC), NSW, 2008. *Best Practice Guidelines – Sydney Turpentine Forest*. Available online at http://www.environment.nsw.gov.au/resources/threatenedspecies/08528tsdssydturpironforestbpg. http://www.environment.nsw.gov.au/resources/threatenedspecies/08528tsdssydturpironforestbpg. http://www.environment.nsw.gov.au/resources/threatenedspecies/08528tsdssydturpironforestbpg. http://www.environment.nsw.gov. http://www.environment.nsw.gov. http://www.environment.nsw.gov. http://www. http://www.environment.nsw.gov. http://www.environment.nsw.gov. http://www.environment.nsw.gov. http://www.environment.nsw.gov. http://www.environment.nsw.gov. http://www.environment.nsw.gov. http://www. http://www.environment.nsw.gov. http://www. http://www. http://www.environment.nsw.gov. http://www. http://www. http://www. http://www. <a hre

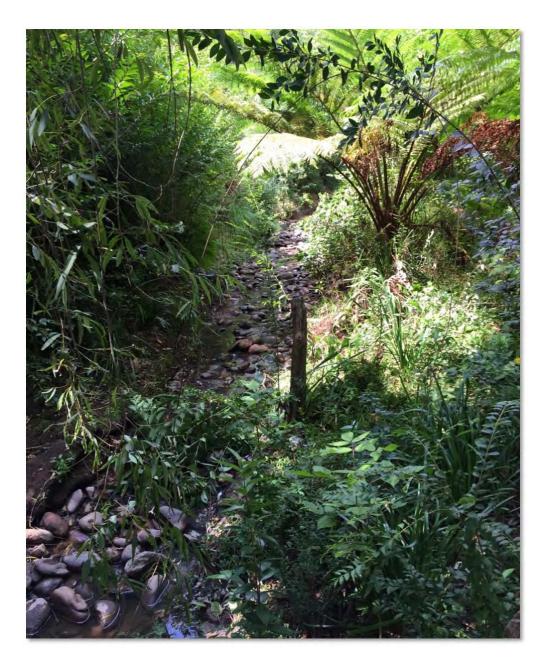
Soceity for Ecological Restoration Australasia (2015). *National Standards for the Practice of Ecological Restoration in Australia* - DRAFT

Vivian-Smith, G., Connell, M., Cupitt, S., & Donatiu, P. (2001) *Tracking your community vegetation project* Greening Australia Queensland, Brisbane, QLD.

	Appendix A Photopoint Monitoring Baseline Data							
Site ID Number	Date	Time	Coordinates	Camera Image Number	Direction	Notes	Image HTML Link	
1	19/01/2016	1:55	33 46.572 S 151 07.625 E	2357	154 SE	Industrial creek	http://s11.postimg.org/li2kqsjgz/DSC02357.jpg	
				2358	174 S		http://s15.postimg.org/db62weg4r/DSC02358.jpg	
2	19/01/2016	2:15	33 46.571 S 151 07.620 E	2359	248 W	Industrial creek	http://s15.postimg.org/ennryadkb/DSC02359.jpg	
			33 46.430 S	2360	316 NW		http://s24.postimg.org/5f5odvfn9/DSC02360.jpg	
3	19/01/2016	2:40	151 07.366 E	2361	35 NE	Shrimptons Creek	http://s15.postimg.org/afszpjc4r/DSC02361.jpg	
			33 46.398 S,	2362	191 S		http://s30.postimg.org/68v728j1d/DSC02362.jpg	
4	19/01/2016	2:47	151 07.374 E	2363	295 NW		http://s30.postimg.org/tod47l2sh/DSC02363.jpg	
5	19/01/2016	3:02	33 46.425 S 151 07.408 E	2364	274 W	Adjacent retention dam	http://s30.postimg.org/f2m3jc601/DSC02364.jpg	
6	19/01/2016	3:05	33 46.449 S 151 07.397 E	2365	27 NE	Top of hill looking south toward retention dam	http://s30.postimg.org/oklujdroh/DSC02365.jpg	
7	19/01/2016	3:09	33 46.453 S 151 07.407 E	2366	132 SE	Adjacent M2 road boundary	http://s30.postimg.org/lwwe90yn5/DSC02366.jpg	
			33 46.477 S,	2367	284 W	Middle of Site	http://s30.postimg.org/rsqbwfdy9/DSC02367.jpg	
8	19/01/2016	3:15	151 07.461 E	2368	139 SE		http://s30.postimg.org/8inwqqhcx/DSC02368.jpg	
			33 46.495 S,	2369	162 S	Eastern section of site	http://s30.postimg.org/d5tysi4pt/DSC02369.jpg	
9	19/01/2016	3:21	151 07.505 E	2370	227 SW		http://s30.postimg.org/ad0r8h4dd/DSC02370.jpg	

				2371	299 NW		http://s30.postimg.org/o7z1qxysh/DSC02371.jpg
			33 46.475 S,	2372	345 N	Adjacent N boundary fence	http://s30.postimg.org/ftjf2uxr5/DSC02372.jpg
10	19/01/2016	3:30	151 07.510 E	2373	102 E		http://s30.postimg.org/f2qox2vdt/DSC02373.jpg
				2374	348 N	Adjacent brick housing unit	http://s30.postimg.org/kuqt4857I/DSC02374.jpg
11	19/01/2016	3:47	33 46.556 S, 151 07.574 E	2375	102 E	block	http://s30.postimg.org/822p4atlt/DSC02375.jpg

Figure 5. Photo monitoring baseline data. Site visit completed on the 19 January 2016


Appendix K

Communications and Stakeholder Engagement Plan

M2 Macquarie Park Site Rehabilitation and Artwork Installation

Communication and Stakeholder Engagement Plan for the M2 Macquarie Park Motorscapes Project

Contents

Introduction and context	3
Purpose	.3
Project background	. 3
Project area profile	. 4
Figure 1 – Site Location	. 4
Project timeline	. 5
Communication and engagement	5
Objectives	. 5
Stakeholder analysis	. 6
Table 1 – Stakeholder Management	. 6
Identified issues	.7
Table 2 – Issues Management	. 7
Key messages	.8
Communication approach	. 8
Engagement tools and techniques	. 8
Communication protocols	. 9
Appendix A: Communications timeline 1	0
Appendix B: Program of works 1	1

Introduction and context

Purpose

This Community and Stakeholder Engagement Plan has been developed for the rehabilitation of Hills M2 Motorway land between Khartoum road and Christie road (the site) as well as an art installation in Macquarie Park in Sydney's Northwest.

This plan describes the communication and consultation approach and activities for the project and outlines how key stakeholders and the community will be informed prior to and during the project.

Project background

The intention is to undertake bush rehabilitation and provide a public art installation at the site situated to the north of the Hills M2 Motorway between Khartoum road to the east and Christie road to the west.

For the proposed rehabilitation work, new self-supporting ecological communities will be created at the site that complement the communities within Lane Cove National Park immediately to the north of the site and provide an ecological 'buffer' to the site.

In addition, the waterways to the east and west of the site - Industrial and Shrimptons Creek respectively - are to be enhanced with a view to improving the quality of surface water draining into the National Park.

The project will provide a permanent ecological legacy and the rehabilitation efforts will be maintained over the remaining duration of the deed to ensure that the value of the legacy is not diminished.

In addition to, and complementing, the rehabilitation work, a public artwork will be installed roughly midway along the site's east-west alignment and situated towards the southern portion of the site. The form and execution of this artwork has been determined via a public 'ideas competition' and is of a scale that allows motorists to appreciate it within a very short time period as they drive past from either an eastbound or westbound direction. The detailed design and construction of the installation will take into account a range of considerations to ensure that the artistic merit is maximized and the adverse visual and environmental impacts are minimized.

Both the rehabilitation activity and art installation are subject to RMS approval.

It is expected that substantial progress will be achieved with the rehabilitation works by the end of calendar 2016 (see Appendix B) and the artwork would be installed by mid-2017.

Project area profile

The project is located in the Ryde local government area (LGA), the Ryde electorate and within the suburb of Macquarie Park in Sydney's North-west.

The Site borders the Hills M2 Motorway to the south, Lane Cove National Park to the north, a medium density residential area accessed via Leisure Close and bushland reserve to the east and bushland and playing fields to the west. As shown in the figure, the site is within close proximity to Macquarie Park Shopping Centre, Macquarie University, various business premises and a serviced apartment complex. These land uses occur on the southern side of the motorway.

Figure 1 – Site Location

Two watercourses occur on the site. Towards the western end, Shrimpton's Creek flows under the Hills M2 motorway via a large culvert arch and drains in a northerly direction to the Lane Cove River. Industrial Creek is close to the eastern boundary of the site and also flows onto Lane Cove River. Both creeks have heavily urbanized catchments and the water quality reflects this.

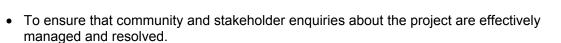
The site has been significantly modified from its original condition and the central part of the site (around 1ha in area) was most recently used as a storage compound and spoil management area as a part of the Hills M2 Upgrade which concluded in 2013. This portion of the site contains a stable flat 'deck' of compacted fill (sandstone rubble, clay and spoil) that does support some vegetation.

Overall, the site has been significantly disturbed and is in very poor ecological and aesthetic condition. Small remnants of native vegetation remain but are badly degraded. The majority of the site is dominated by exotic weed species. Creekside vegetation is also in very poor condition.

Project timeline

Subject to planning approvals, the first phase of the project entails the bush rehabilitation work and is scheduled to start in July 2016. This work will encompass site establishment, weed clearing, creek improvements, revegetation and will take place over approximately 9 months (until early 2017), with ongoing maintenance and monitoring to continue until mid-2019. In addition, the artwork will be fabricated off site, with a scheduled installation date of June 2017.

Communication and engagement


Both elements of the project – the regeneration and artwork - will generate interest among a wide range of stakeholders including Lane Cove National Park and the surrounding community.

The nature of public art is polarising, such that opinions may vary greatly, we will implement robust engagement tools and techniques to inform and educate the community about the project.

The engagement process will focus on key stakeholders particularly visually impacted residents in close proximity to the site and be supported by regular communication through a variety of channels such as letter, print advertisements, website and information sessions. Broader stakeholders will be communicated with and kept informed via channels such as the Hills M2 website and other methods identified in the *Engagement tools and techniques* section of this plan.

Objectives

- To build strong support for and understanding of the project with a view to enhance the quality of natural vegetation in the site.
- To inform and build key stakeholders' (including road users) understanding of the project throughout the duration of the project.
- To identify any reasonable issues that key stakeholders may have in relation to the project and seek to resolve these if possible.
- To provide regular and clear communication to support engagement and ongoing awareness of the project.

transurban 🛛 🕵 🕅

2

- To ensure that project information is distributed in an effective and timely manner.
- To capture lessons for application to future similar projects.

Stakeholder analysis

Table 1 below identifies stakeholders that have an interest in the project. These stakeholders may either be impacted by the project or may influence or become advocates for the project.

Stakeholder Group	Stakeholder	Involvement	Proposed communication activities
RMS	Motorway Management and media	Keep informed	Face to face briefing
Elected government representatives	The Hon. Victor Dominello MP	Good news story for the electorate	Face to face briefing
Federal Government	John Alexander	Keep informed	Stakeholder letter
State Government	The Hon. Duncan Gay MP	Good news story Prevent customer backlash	RMS CEO briefings- updates via RMS
Lane Cove National Park	Michele Cooper	Keep informed	Face to face briefing
Department of Primary Industries	Fisheries	Works Notification	Email notification of works prior to commencement
Local Government	Ward councilors	Keep informed	Stakeholder letter
Emergency services	SES, Police	Dealt with via project manager	Email advice for lane closures
Visually impacted residents	Local residents	Keep informed	Community Information Session Information letters and website Open lines of communication
Local business	Meriton and Macquarie University	Keep informed	Information letters and website
Road users	Customers	Keep informed	Website
Interest groups	Friends of Lane Cove National Park, Lane Cove National Park	Keep informed	Information letters Community Information Session
Wider community		Keep informed	Website, press and

Table 1 – Stakeholder Management

TRANSURBAN | HILLS M2

	media release Community Information Session
--	---

Identified issues

The impact of construction works on stakeholders and the community is anticipated to be minor; given work will generally occur during standard construction hours.

Table 2 below is a summary of identified issues and the strategies to manage these.

	~		
lable	2 -	Issues	Management

Issue	Management Strategy
Noise: caused by site establishment works, weed clearing and mulching activities	 turning off equipment and vehicles when not in use where possible, direct noise generating equipment away from homes effective and timely response to complaints and enquiries ensure residents are informed of night works 5 days prior
Dust: caused by site establishment works, mulching and spreading of top soil	 Use of water to suppress dust effective and timely response to complaints and enquiries
Visual Impact: 9 individual artwork sculptures will be installed on site from 2-11 metres in height that will be visible from the motorway and surrounding properties	 Visually impacted residents will be contacted directly by mail and open lines of communication will be established via phone, email and a website. Community Update to be distributed to local residents, local businesses and key stakeholders to inform about the project and the artwork. Ongoing construction updates to be distributed throughout the project to local residents, local businesses and key stakeholders. Including an artist's impression of the artwork and what to expect upon project completion. Print advertisements will be run prior to artwork installation to further inform the community. A 'drop-in' community information session held locally for community members to discuss project with project team, including the artwork design and its meaning. Dedicated website developed to include images, artwork explanation, artwork selection criteria etc. Enquiries email address created to be managed by a Transurban Public Affairs representative as a point of contact for the community in the event they would like to raise questions or concerns about the project and the artwork. Media to be generated upon project completion to raise awareness about the project and the artwork.

Key messages

Key messages will be developed and updated as the project progresses to ensure consistency across all communication and engagement activities. Project team members should be aware of the key messages to ensure consistent information is shared with communities and stakeholders.

- Transurban is committed to taking a sustainable approach to all our operations, projects and business practices to create the best outcomes for our government clients and the communities we serve.
- Our sustainability strategy underpins our corporate strategy and reinforces Transurban's vision "to strengthen communities through transport."
- One of the ways we aim to 'be good neighbours' is by investing in communities where we operate our road networks with a project such as this.
- 'Thinking long term' is one of our three sustainability pillars, the rehabilitated site will create healthy functioning eco-systems and enhance quality of water flow into Lane Cove river providing long-term environmental benefits.
- Here in NSW, we are excited to follow the successful model used in Melbourne to incorporate a public artwork installation on site. We expect that this installation will be well supported through the Sydney art community.
- The overall project will enhance the visual diversity of the area.
- Rehabilitation of the site will be designed in conjunction with Landcare Australia.
- We anticipate the project to start in mid-2016 and be completed by mid-2017.
- Once the project is complete, it will make a positive contribution to visual landscape and the community.

Communication approach

Our communication approach for the project will focus on establishing open lines of communication with the community, specifically visually impacted residents. Further, construction updates and notifications will be regularly distributed to inform the community of progress and delivery of the project. We want to establish relationships and maintain regular communication, information and interface with key stakeholder groups.

Engagement tools and techniques

- Visually impacted residents will receive targeted correspondence, including relevant work notifications, construction updates and an invitation to a community information session. On all pieces of collateral, 'contact us' information will be clearly defined so visually impacted residents can reach the project team at any time through a variety of communication channels such as email, post, phone and website.
- An 'enquiries' email address to be created and managed by Transurban

- Community updates and construction notifications for nearby residents, businesses and stakeholders
- Meetings and briefings for stakeholders, businesses and residents (as required)
- Print advertisements in local newspapers
- One 'drop-in' community information session held locally for community members to discuss project with project team
- Site inductions, training and tool box sessions
- Project updates on websites, including the formation of a dedicated project page (Transurban, Roam Express and Landcare Australia)
- Consultation Management database
- Site signage

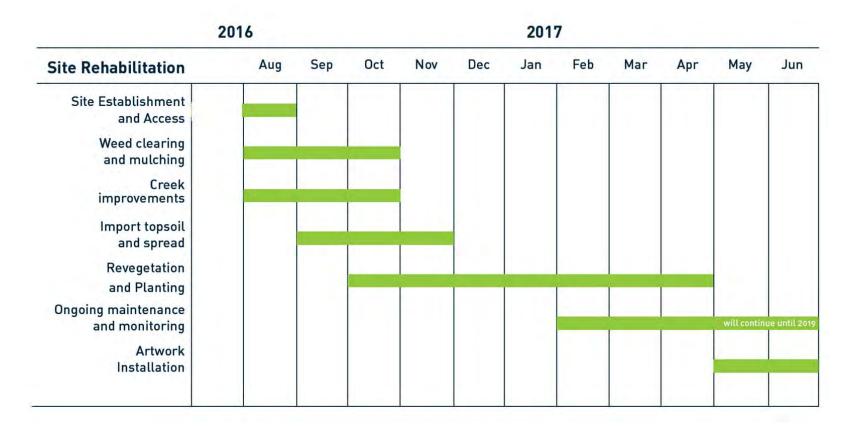
Communication protocols

Contacts management

Transurban will establish and maintain a register of all electronic, written and verbal contact concerning the proposal and any work, monitor responses to community within an agreed timeframe and provide a record of correspondence received by the project team.

Issues resolution

The Transurban Public Affairs team will expeditiously address and seek the early resolution of all complaints and claims by members of the community in relation to the project. The team will manage dispute resolution mechanisms and procedures to enable the prompt resolution of any issues.



Appendix A: Communications timeline

Project Milestone	Communications activities	Audience	Timing	Responsibility	Status
ldeas Competition Launch	Media release Stakeholder letter Website update Email blasts Briefings	Art community Participants Stakeholders	September 2015	Transurban with external resourcing	Complete
Winners of Ideas Competition Announced	Media release Stakeholder letter Website update Email blasts Briefings Awards event	Art community Participants Stakeholders	December 2015	Transurban with external resourcing	Complete
Project REF submitted to RMS for approval			May 2015	Transurban	Complete
Project REF approved	Stakeholder briefings Brochure – overview of project Website update Media release Doorknock	Residents Stakeholders Internal comms	July 2016	Transurban	
Site preparation works start	Letter advising works start Website update	Residents Motorists	August 2016	Transurban with assistance from Landcare Australia	
Rehabilitation works	Bi-monthly construction updates Works notifications Website update Stakeholder briefing	Residents Motorists Stakeholders	August 2016 – April 2017	Transurban with assistance from Landcare Australia	
Community Information Session	One 'drop-in' community information session held locally for community members to discuss project with team	Visually impacted residents Stakeholders Project Team Other community members	Mar – April 2017 (Date TBC)	Transurban with assistance from artwork design and construction contractor	
Art Installation complete	Information letter Website update	Residents Stakeholders	May 2017	Transurban	
Project Complete	Post card Timelapse footage	Resident Stakeholders Media	May 2017	Transurban	
Opening Launch	Media release Website update	VIPs, RMS Media, Key stakeholders	June 2017	Transurban	

Appendix B: Program of works

TRANSURBAN | HILLS M2

Appendix L

PACHCI Clearance Letter

Transport Roads & Maritime Services

30/06/2016

Lyndall Thornhill Environment Officer 27-31 Argyle Street Parramatta NSW 2150

Dear Lyndall

Re: Preliminary assessment results for the M2 Macquarie Park Motorscapes Project proposal based on Stage 1 of the *Procedure for Aboriginal cultural heritage consultation and investigation* (the procedure).

The project, as described in the Stage 1 assessment checklist, was assessed as being unlikely to have an impact on Aboriginal cultural heritage. The assessment is based on the following due diligence considerations:

- The project is unlikely to harm known Aboriginal objects or places.
- The AHIMS search did not indicate any known Aboriginal objects or places in the immediate study area.
- The study area does not contain landscape features that indicate the presence of Aboriginal objects, based on the Office of Environment and Heritage's *Due diligence Code of Practice for the Protection of Aboriginal objects in NSW* and the Roads and Maritime Services' procedure.
- There will be no removal of mature trees in the study area.
- The compound site will be in a previously disturbed area.
- The works being undertaken are within the disturbed zone of the RMS road corridor.

Your project may proceed in accordance with the environmental impact assessment process, as relevant, and all other relevant approvals.

If the scope of your project changes, you must contact me to reassess any potential impacts on Aboriginal cultural heritage.

If any potential Aboriginal objects (including skeletal remains) are discovered during the course of the project, all works in the vicinity of the find must cease. Follow the steps outlined in the Roads and Maritime Services' *Unexpected Archaeological Finds Procedure*.

For further assistance in this matter do not hesitate to contact me.

Yours sincerely

Jéff∕Nelson

Aboriginal Cultural Heritage Officer (ACHO) – Sydney Region

Roads and Maritime Services